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Abstract: In this paper, we investigate properties of A-self-adjoint operators and other relations on Hilbert spaces. In this 

context, A is a self-adjoint and an invertible operator. More results on operator equivalences including similarity, unitary and 

metric equivalences are discussed. We also investigate conditions under which these classes of operators are self- adjoint and 

unitary. We finally locate their spectra. 
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1. Introduction 

Throughout this paper Hilbert spaces or subspaces will be 

denoted by capital letters,  � and  � respectively and  �, �, 
 

etc denote bounded linear operators where an operator means 

a bounded linear transformation. 
(�)  will denote the 

Banach algebra of bounded linear operators on �. 
(�, �) 

denotes the set of bounded linear transformations from  � 

to �, which is equipped with the (induced uniform) norm. 

If � ∈ 
(�) , then �∗  denotes the adjoint while 

 ���(�) ,  ���(�) , ��  and ��  stands for the kernel of � , 

range of � , closure of �  and orthogonal complement of a 

closed subspace � of � respectively. For an operator  �, we 

also denote by  �(�) ,  ∥ � ∥ the spectrum and norm of � 

respectively.  

A contraction on � is an operator � ∈ 
(�)  such that 

�∗� ≤ � (i.e. ∥ �� ∥≤∥ � ∥  ∀ � ∈ �). A strict or proper 

contraction is an operator � with �∗� < � (i.e. 
�� 

0 ≠ � 

∥#$∥
∥$∥  < 1).If �∗� = �, then T is called a non-strict 

contraction (or an isometry).Many authors like Kubrusly [7] 

have extensively studied this class of operators. 

An operator � ∈ 
(�) is said to be positive if '��, � ( ≥ 0  
∀ � ∈ �. Suppose that � ∈ 
(�) is a positive operator, then 

an operator � ∈ 
(�) is called an � − +,�-��+-.,� on � if 

 �∗�� ≤ �. If equality holds, that is  �∗�� = �, then � is 

called an � − ./,0�-�1, where � is a self adjoint and 

invertible operator. 

In this research, we put more conditions on �. In particular, if 

� is a self adjoint and invertible operator, then we call such 

an � − ./,0�-�1 an � − 2�.-��1. Let � be a linear operator 

on a Hilbert space �.  

We define the � − �34,.�- of �  to be an operator S such that 

 �� = �∗� .The existence of such an operator is not 

guaranteed. It may or may not exist. In fact a given � ∈ 
(�) 

may admit many � − �34,.�-/ and if such an � − �34,.�- of 

�  exists, we denote it as �[∗] . Thus ��[∗] = �∗� .We are 

making an assumption that �  is invertible and so 

 �[∗] = �78�∗�. It is also clear that � − �34,.�- of  � is the 

adjoint of � if  � = �. By [2], � admits an  � − �34,.�- if and 

only if  ���( �∗�) ⊂ ���(�). In this case the operator � is 

acting as a signature operator on �. 

Two operators � ∈ 
(�) and � ∈ 
(�) are similar (denoted 

� ≈ �)  if there exists an operator ; ∈ < (�, �)  where 

< (�, �)  is a Banach subalgebra of B (�, �)  which is an 

invertible operator from �  to � such that ;� =
�; (i. e, ;78�; ,� � = ;�;78). � ∈ 
(�)  and � ∈ 
(�)are 

unitarily equivalent (denoted� ≅ �), if there exists a unitary 

operator 2 ∈ < (�, �) such that 2� = �2(.. �, � =
2∗�2 ,� �G�.H�I��-I1 � = 2�2∗). 

Two operators are considered the “same” if they are unitarily 

equivalent since they have the same, properties of 

invertibility, normality, spectral picture (norm, spectrum and 

spectral radius). 

An operator ; ∈ B (�, �)  is quasi-invertible or a quasi-

affinity if it is an injective operator with dense range (i.e. 

��� ; = {0} and ���(;) = � ; equivalently, ��� ; = {0L} 
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and, ��� ;∗ = {0L}  thus ; ∈ 
 (�, �)  is quasi-invertible if 

and only if ;∗ ∈ 
(�, �) is quasi-invertible). 

An operator � ∈ 
(�) is a  quasi-affine transform of 

 � ∈ 
(�) if there exists a quasi-invertible ; ∈ 
 (�, �) 

such that  ;� = �; (.� ; .�-��-M.��/ � ��3 �).� is a 

quasiafiine transform of � if there exists a quasinvertible 

operator intertwining  � to �. 

Two operators �, 
 ∈ 
(�)  are said to be almost similar 

(a.s) (denoted by �  
~
O.P ) if there exists an invertible operator 

Q such that the following two conditions are satisfied:�∗� =
Q78(
∗
)Q and �∗ + � = Q78(
∗ + 
)Q. 

Two operators �, 
 ∈ 
(�)  are said to be metrically 

equivalent (denoted by �  
~
S.T )  if ∥ �� ∥=∥ 
� ∥ 

(equivalently, |V��, ��W|
X
Y = |V
�, 
�W|

X
Y  for all � ∈ � ) or 

�  
~
S.T  if �∗� = 
∗
 .This concept was introduced by 

Nzimbi et al ([8]). 

Two linear operators � ∈ 
(�) and � ∈ 
(�) are said to be 

� − ��.-��.I1 equivalent (denoted� ≅ �), if there exists an 

� − ��.-��1 operator 2 ∈ < (�, �)  such that �2 = 2�. 
We shall also define the following classes of operators in 

this paper: 

An operator � ∈ 
(�) is said to be an involution if  �Z= �. 

An operator � ∈ 
(�) is said to be self-adjoint or Hermitian 

if  �∗ = �  (equivalently, if  '��, �( ∀  ∈ �). 

An operator � ∈ 
(�) is said to be unitary if  �∗� = ��∗  =
� and normal if  �∗� = ��∗(equivalently, if  ∥ �� ∥= ∥ �∗� ∥
 ∀ � ∈ �). 

An operator � ∈ 
(�) is said to be a partial isometry if  

� = ��∗� or equivalently, if  �∗� is a projection. 

An operator � ∈ 
(�) is said to be quasinormal if �(�∗�) = 

(�∗�)�  or equivalently if �  commutes with (�∗�)  that is 

 [�, �∗�] = 0. 

Let � and � be Hilbert spaces. An operator ; ∈ 
(�, �) is 

invertible if it is injective (one -to- one) and surjective (onto 

or has dense range); equivalently if ���(;) = {0} and 

���(;) = �. We denote the class of invertible linear 

operators by  < (�, �).The commutator of two operators � 

and 
, denoted by [�, 
] is defined by �
 − 
�. The self –

commutator of an operator � is [�, �∗] = �∗� − ��∗. 
Suppose � ∈ 
(�) is a self-adjoint and invertible operator, 

not necessarily unique. An operator �  ∈ 
(�)  is said to 

be � − /�I[ �34,.�-  .[  �∗ = ���78 ( equivalently, �[∗]  =
�) , � − s\�M �34,.�-  .[  �∗ = −���78  ( equivalently, 

�[∗]  = −�) , � − �,�0�I if �78 �∗�� = ��78 �∗� or 

equivalently, �[∗] T  = ��[∗], � − ��.-��1  if  �∗�� = �  or 

equivalently, �[∗]  = �78.Clearly, an �-isometry whose range 

is dense in � is an  � −  ��.-��1. 

2. Basic Results 

We shall investigate operators in a Hilbert Space � that are 

not self-adjoint. It is well known that every self- adjoint 

operator has a real spectrum. 

The following results will form a basis for our discussion 

throughout this paper. 

Theorem 2.1 [7, Theorem 2.1]. An invertible operator � is 

a product of two self-adjoint operators if and only if  �(�) =

�(�∗). 
Proof: [See 7]. 

Remark: The product of two self-adjoint operators need 

not to have real spectrum. To justify our claim, we consider 

self-adjoint operators ] = ^1 0
0 −1_ and  ` = ^0 1

1 0_. The 

product ]` = ^ 0 1
−1 0_ has a purely imaginary 

spectrum{., −.}. Denoting by ℑb the set of all invertible 

products of self-adjoint operators ] and ` and by ℑ the set of 

invertible operators that are similar to their adjoints, we see 

that  ℑb ⊆  ℑ. The above theorem asserts that ℑ ⊆  ℑb is also 

valid. By using the invariance of these two classes under 

similarity transformations, we notice that ℑ is strictly larger 

than the class of operators that are similar to their adjoints. 

We can give an example of a unilateral shift operator on 

� = IZ in this context. 

Theorem 2.2 [12]:� ∈ 
(�) is unitarily equivalent to its 

adjoint if and only if �  is a product of a symmetry (self-

adjoint or unitary involution) and a self-adjoint operator. 

Theorem 2.3 [7, pp. 6]: Two normal operators that are 

similar are unitarily equivalent. 

Remark: Any invertible normal operator which is similar 

to its adjoint can be expressed as a product of self-adjoint 

operators, that is, if � is normal and � ∈  ℑ, then  � ∈ ℑb. 

Proposition 2.4 [17]: If � ∈ 
(�)  is self-adjoint and 

injective, then �78 is also self-adjoint. 

Remark: Just like other bounded linear operators, the 

� -self adjoint operation satisfies the following properties 

which can easily be shown using the definition of an  

� − /�I[ �34,.�- ,[ �, -ℎ�- ./,  �∗ = ���78: 

(a). (�8 + �Z)[∗] = �8
[∗] + �Z

[∗]
 

(b). (�8�Z)[∗] = �Z
[∗]�8

[∗]
 

(c). (�78)[∗] = (�[∗])78 

(d). (e�)[∗] = eL�[∗] 

3. A-Self-Adjoint Operators 

Definition: A Jordan algebra f  consists of a real vector 

space equipped with a bilinear product �1  satisfying the 

commutative law and the Jordan identity: �1 = 1�  and 

(�Z1)� = �Z(1�) ∀ �, 1 ∈ ℝ. A Jordan algebra is formally 

real if   ∑ �i
Zj

ik8 = 0 ⇒ �8 = ⋯ = �j = 0. 

Remark: An associative algebra,  fn  over a real Hilbert 

space �  gives rise to a Jordan algebra f  under quasi-

multiplication: the product �1 = 8
Z (�1 + 1�) is commutative 

and satisfies the Jordan identity since 4(�Z1)� = (�Z1 +
1�Z)� + �(�Z1 + 1�Z) =  �Z1� + 1�p + �p1 + �1�Z =
�Z(1� + 1�) + �Z(1� + 1�)4�Z(1�). 

We say that a Jordan algebra  fn  is / �+.�I  if it can be 

realized as a Jordan subalgebra of some Jordan algebra f. 

Example: If fq  is a set of Jordan operators, then the 

subspace of hermitian operator �8
[∗] = �8 is also closed under 

the Jordan product, since if �8
[∗] = �8  and �Z

[∗] = �Z , then 

(�8�Z)[∗] = �8
[∗]�Z

[∗] = �Z�8 = �8�Z forms a special algebra 

�(fq, [∗]). These hermitian algebras are the archetypes of all 

Jordan algebras. We can easily check that hermitian matrices 

over ℝ ,� ℂ form special Jordan algebras that are formally 
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real. 

We shall investigate the Jordan algebra  

fq of � − /�I[ �34,.�- Operators denoted by the set 

fq = {� ∈ 
(�): �[∗]  = �}. Note that just like many other 

algebras like the Lie algebra tq, fq is an ℝ- linear subspace. 

That is, it is closed under real linear combinations. 

We outline in the following results some conditions that 

guarantee an � − /�I[ �34,.�- to be self-adjoint. 

Proposition 3.1: [7]. Every self –adjoint operator �  is 

� − /�I[ �34,.�-. 

Remark: The converse of the above proposition is not 

generally true. For consider the operators � = ^0 −1
1 0 _ 

and� = ^0 1
1 0_. A quick calculation reveals that � is 

� − /�I[ �34,.�- but it is not self-adjoint. We note that 

 � − /�I[ �34,.�-��// coincides with self-adjointness when 

� is an identity operator. 

We now answer the question: when is an � −
/�I[ �34,.�- operator self-adjoint? The results below give us 

answer the question. 

Lemma 3.2: Let � ∈ 
(�) be � − /�I[ �34,.�- operator. 

Then � is self-adjoint if and only if  � and �∗ commute with 

an involution. 

Proof: Suppose � ./ � − /�I[ �34,.�-. Then  �∗ = ���78 

for some invertible and self-adjoint operator �. Now suppose 

that the similarity transformation �  is an involution. Then, 

clearly,  ���78�∗ = �78�∗� = ��∗�78 . This assertion 

proves that  � = �∗ and so � is self-adjoint. 

Theorem 3.3 [15]: Let � and � be Hilbert spaces and let  

� ∈ 
(�, �). Then 

i. ���(�) = ���(�∗)� 

ii. ���(�∗) = ���(�)� 

iii. ���(�)LLLLLLLLLL= ���(�∗)� 

iv. ���(�∗)�LLLLLLLLLLLLL= ���(�)� 

Remark: We note that if � ∈ 
(�) is self-adjoint, then by 

iii above, ���(�)LLLLLLLLLL= ���(�)� and so � = ���(�)⨁���(�)LLLLLLLLLL. 

It has been proved in [7] that if �  ∈ 
(�) is an � −
/�I[ �34,.�- , then its adjoint �∗  is injective. This result 

together with the corollary to Theorem 4.12 [13] enables us 

identify the relationship between � − /�I[ �34,.�- operators 

and the quasi-affinity. (See Theorem 3.5 pp. 10, of [7]). 

Evidently, if �  ∈ 
(�)  is an � − /�I[ �34,.�-  operator, 

then � and its adjoint, �∗ are quasi-affinities. In fact � and �∗ 

are left invertible, that is if there exists an operator� ∈ 
(�) 

such that �� = � and ��∗ = �. 

We shall also give the relationship between metrically 

equivalent operators and � −unitarily equivalent operators 

for some given quasiaffinity: 

Theorem 3.4: [10, Theorem 3.29 (ii)]: If �  and 
  are 

metrically equivalent operators and �  is self-adjoint, then 

� = |
|. 
Theorem 3.5 [9, Theorem 2.9 (Fuglede-Putnam-

Rosenblum)]: Let  � ∈ 
(�)  and 
 ∈ 
(�) .If �; =
;
 holds for some operator ;, then �∗; = ;
∗. 

Theorem 3.6: Let  �, 
 ∈ 
(�) . Suppose �  and 
  are 

metrically equivalent operators, ��∗ = 

∗  and  

;
 = �;, ;∗
 = �;∗ for some quasiaffinity ;  which is �-

unitary, then � and 
 are � −unitarily equivalent. 

Proof: We first note that every unitary operator is � −
��.-��1. We show that if � and 
 are metrically equivalent 

then they are unitarily equivalent. 

Suppose �∗� = 
∗
 ,  ��∗ = 

∗  and ;
 = �;, 
;∗
 = �;∗  for some quasiaffinity  ;. Suppose ; = 2|;| is 
the polar decomposition of  ;, where 2 is a partial isometry 

and |;| = √ ;∗; is positive. 

Define w = ^; 0
0 ;_  and � = ^ 0 �


∗ 0_ on  �⨁� . Since  ; 

is a quasiaffinity, so is w. Using ;
 = �; ��3 ;∗
 = �;∗ 

we have that �∗� = ^
∗
 0
0 �∗�_ = ^�∗� 0

0 
∗
_ = ��∗ and 

�w = w�∗  which means that S and �∗  are quasisimilar 

normal operators. By the Fuglede-Putnam-Rosenblum 

Theorem above, S and �∗  are unitarily equivalent meaning 

that there exists a unitary operator 2 such that � = 2∗�∗2 

where 2 is a polar decomposition of  ;. That is  ^ 0 �

∗ 0_ =

2∗ ^ 0 

�∗ 0_ 2, which shows that  � = 2∗
2. 

Question: Is every part of an � − /�I[ �34,.�- operator � 

also � -self adjoint? This question can be answered if we 

decompose �  as a direct sum � = �8⨁�Z  by specifying 

certain conditions on the direct summands of � .We 

summarize this in the following theorem: 

Theorem 3.7: Every part of an � − /�I[ �34,.�- 

operator � is �-self adjoint. 

Proof: Suppose � = �8⨁�Z  where �8  has a certain 

property ]  while �8  is devoid of property ] . Then by 

definition of � -self adjointness we have �∗ = �8
∗⨁�Z

∗ =
�(�8⨁�Z)�78 =  ��8�78⨁��Z�78. Thus, �8 =  ��8�78 and 

�Z =  ��Z�78 as required. 

Remark: It has been shown in [7] that if  � ∈ 
(�) is an 

� − /�I[ �34,.�-  operator then �  is unitary if �  is an 

involution. In additional, the spectrum of � is either real or 

complex; if complex, then the eigen values come in complex 

conjugate pairs.(see [6]). This gives us a necessary and 

sufficient condition for �-self adjointness. 

In general, such operators have are symmetric with respect 

to the real axis. Equality of spectra is a necessary condition 

for � -self adjointness. We summarize it in the following 

corollary: 

Corollary 3.8: Let �  ∈ 
(�)  is an � − /�I[ �34,.�- . 

Then 

a). �x(�) = �x(�∗) 

b). �y(�) = �y(�∗) 

c). �z(�) = �z(�∗) 

Proof: Since �  is an � − /�I[ �34,.�-  then by 

definition  �∗ = ���78 . Thus,  �∗  and �  are similar and 

hence have the same spectrum. Therefore the above claims 

follow since �(�) is the disjoint union of �x(�), �y(�) and 

�z(�). 

Counter Example 

The backward shift operator �: IZ → IZ  defined by 

�(�8, �Z, �p, … ) = (�Z, �p, �}, … )  is not � -self adjoint. Its 

adjoint (called the unilateral shift) is defined by 

�∗(�8, �Z, �p, … ) = (0, �8, �Z, … ) .We see (as an infinite 

matrix) that every ~ ∈ ℂ  with  │~│ < 1  (open unit disc 

centred at the origin) is in �x(�) and that �x(�∗) = ∅. Also, 
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{ ~ ∈ ℂ: │~│ < 1} ⊂ �z(�∗). Hence �  is not �-self adjoint 

(for any �  with the required properties) because the 

necessary condition for �-self adjointness is not satisfied i.e. 

�(�) ≠ �(�∗). 
Question: Given that � ∈ 
(�)  is � -self adjoint, is 

�� −self adjoint? We provide the solution in the following 

theorem. 

Theorem 3.9:  � ∈ 
(�) is �-self adjoint, if and only if is 

�� − self adjoint. 

Proof: � ∈ 
(�) �-self adjoint implies that  �∗ = ���78. 

We then have that  �∗� = �� . Thus (��)∗ =  �∗ �∗ =
 �∗� = �� (since � is self-adjoint). 

Conversely, let �� be �-self adjoint. Then (��)∗ = ��. Post 

multiplying both sides of this equation by �78 and using the 

definition we have  �∗ = ���78. This completes the proof. 

Remark: In view of the above theorem, we see that the 

mapping defined by �: � → ��  is an isomorphism i.e. it 

establishes a one-to-one correspondence between the class of 

self- adjoint and �-self adjoint operators in the Hilbert space 

�. In fact if we let � ∈ 
(�) to be �-self adjoint then we see 

that �  is self-adjoint if �  commutes with �  i.e. �� = �� . 

Here  �∗ = ���78 = �. Then  �� = ��. 

4. A-Self-Adjoint, Unitary Equivalence 

and A-Unitarily Equivalence of 

Operators 

It is well known that unitary equivalence is an equivalence 

relation. We give a condition which shows that unitary 

equivalence preserves �-self adjointness. 

Theorem 4.1: Let � and � be bounded linear operators on 

a Hilbert space �. If  � is �-self adjoint and � is unitarily 

equivalent to � , that is 2� = �2 , where 2  is a unitary 

operator, then � is 2�2∗-self adjoint. 

Proof: We have  �∗ = ���78  and � = 2∗�2  for some 

unitary operator  2 . Using these two equations we can 

simplify and re-write �∗  in terms of operators 2 , �  and 2∗ 

only as: 

�∗ = 2�∗2∗ = 2[���78]2∗ = 2{�(2∗�2)�78}2∗ =
(2�2∗)�(2�782∗)  which establishes the claim. 

Remark: The above theorem shows that unitary 

equivalence preserves � -self adjointness if and only if 

2�2∗ = �. That is, if the unitary operator 2 is �∗-unitary. 

We see that unlike self-adjointness, unitary equivalence does 

not preserve �-self adjointness. 

The following results will enable us establish the relationship 

be �-unitarily equivalence and �-normal operators. 

Definition 4.2: The automorphism group of �-unitary 

operators is the set  �q = {� ∈ 
(�):�[∗]  = �78}. 

Theorem 4.3 [7]. Every unitary operator is �-unitary. 

Proof: [7, pp. 21]. 

Remark:  �q is a multiplicative group. If, � ∈  �q, then  

�� ∈ �q. This follows from  (ST)[∗] = �[∗]�[∗] =
�78�∗�∗� = �78(��78�78. ��78�78)� = �78�78 =
(��)78. 

Definition 4.4: Two linear operators � ∈ 
(�)  and 

� ∈ 
(�)  are said to be  � − ��.-��.I1 �G�.H�I��- 

(denoted T ≅ S ), if there exists an  � − unitary  operator 

2 ∈ < (�, �) such that  �2 = 2�. 
In a real Hilbert space of dimension �, an operator is called 

Lorentz if it is � − ��.-��1  where � = �x ⊕ −�� where 

 , G ∈ �  and   + G = � . For instance if  � = ^1 0
0 −1_ , 

then � = ^ . 0
0 −._ is Lorentz. 

Definition 4.5: A conjugation is a conjugate-linear 

operator �: � →  �  which is both involutory (i.e., �Z = � ) 

and isometric. 

Remark: If we let  � = �∗  = �78 , then � is a 

conjugation. Thus, this Jordan algebra fq  will contain the 

invertible normal operators, operators defined by Hankel 

matrices, Toeplitz and the Volterra integration operator 

�([)(-) = � [(/)3/�
b  for a function [(/) ∈ �Z(0, 1)  and 

- ∈ (0, 1). 
Remark: Every � -unitary operator �  is invertible. We 

note that if �  is � -unitary then �∗  is also � -unitary. This 

follows from the fact that (�[∗])∗ = (�78)∗ = (�∗)[∗] ⇒
(�∗)[∗] = (�∗)78 ⇒ �∗ is  �-unitary. 

Theorem 4.6 [8]: If �  is a normal operator and � ∈

(�)is unitarily equivalent to �, then � is normal. 

Proof: [8]. 

Theorem 4.7 [7]: Every normal operator � is �-normal. 

Proof: [7, pp. 30-31]. 

Remark: Not all �-normal operators are normal. For 

example, if � = ^0 1
1 0_and � = ^. .

. 0_ a quick 

mathematical computation reveals that �[∗]� = ��[∗] and 

�∗� ≠ ��∗. Therefore, � is �-normal but not normal. 

We also see that �-self adjoint and �-unitary operators are 

special cases of �-normal operators. 

Corollary 4.8: If �  is an � - normal operator and  

� ∈ 
(�) is �- unitarily equivalent to � then � is �-normal. 

Proof: From Theorem 4.7 above, every unitary operator 

(w.l.o.g, letting � = � ) is � - unitary and using a similar 

argument, we see that every normal operator � is �-normal. 

It suffices to show that S is normal. 

Now, suppose that �; = ;�, that is � = ;�;∗ where ; is 

� − unitary and � is �-normal. 

Then �∗� = (;�;∗)∗(;�;∗) =  ;�∗;∗;�;∗ =  ;�∗�;∗ 

(Since ;∗; = �) =  ;��∗;∗  (Since T is normal)  =
 ;�(;�)∗ = �;;∗�∗  (Since XT=SX and (;�)∗ = ;∗�∗ ) =
 ��∗ (Since;∗; = �). That is � is normal. Since every normal 

operator �  is � -normal, it follows that �  is � -normal as 

required. 

Finally, we discuss some conditions that guarantee a 

product of �-self adjoint operators to be �-self adjoint: 

Theorem 4.9: [7, Theorem 3.19 (ii)] If  ] and ` are �-self 

adjoint operators, then the product � = ]` is �-self adjoint 

if and only if  [], `] = 0. 

By the above Theorem, we note that fq  is a linear space 

which is not closed under multiplication. However, it is 

closed with respect to the Jordan product given by the 
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equation  {], `} = 8
Z {]` + `]}. 

Corollary 4.10: An invertible operator � is a product of 

�-self adjoint operators ]  and `  if and only if �  is � -self 

adjoint. 

Proof: Suppose � is invertible with � = ]` and ]∗ =
�]�78,`∗ = �`�78. Invertibility of � implies that � =
��78 = (]`)(]`)78 = ]``78]78 and 0 ∉  �(�) implies 

that 0 ∉  �(]`). Hence ] and ` are invertible and so is  `]. 

Clearly, �∗ = (]`)∗ = `∗]∗ = (�`�78)(�]�78) =
�(`])�78) =  �(]`�78(Since[], `] = 0).That is �∗ =
 �(]`)�78 = ���78 which shows that � is � −
/�I[ �34,.�-. 
Conversely, suppose � is invertible and  � is A-self adjoint. 

Since � is invertible, by the polar decomposition theorem, � 

has a unique polar decomposition � = 2� , where 2  is 

unitary (and not necessarily self-adjoint) and � =(�∗�)8 Z�  is 

positive (hence self-adjoint) operator. We use � -self 

adjointness of � to show that 2, must indeed, be self-adjoint. 

� -self adjoint of �  implies that 2� = �78(2�)∗� =
�78�2∗�, for some invertible operator �. �-self adjoint of 

� = 2� (invertible) implies that 2 is self adjoint. But every 

self adjoint operator is � -self adjoint. This completes the 

proof. 
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