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Abstract: Lassa fever is an acute hemorrhagic zoonotic illness (possible transmission from infected animals to humans), 

caused by Lassa virus whose reservoir host is the Mastomys natalensis (Rodent). It is a disease with a duration of 2-21 days 

that strives more in African nations and countries with poor water and environmental sanitation. In this paper, a deterministic 

model for Lassa fever is formulated buttressing the various stages of infection of the disease. We studied the existence and 

uniqueness of the solutions. The steady states of the model are determined and the basic reproduction number is analyzed with 

a threshold parameter R� which shows persistence of the disease if and only if R0 > 1 using the next generation matrix. The 

treatment strategies considered amidst others are the use of antiviral drug and to quarantine infected individuals on early 

diagnosis of the infection on the asymptomatic and symptomatic individuals respectively. Numerically, it was evidential that 

the quarantine system has a great positive effect on the rate of recovery of the infected individuals and also in curbing the risk 

of infection in the environment which can help safeguard the population. A relapse on this method will lead to reinfection of 

the disease thereby bringing the population to a point of danger. 
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1. Introduction 

Lassa fever (LF) which is caused by Lassa virus (LASV) 

was first discovered in Nigeria in 1969 [1], an acute viral 

hemorrhagic illness, a single stranded RNA virus belonging 

to the family Arena viridae whose reservoir is the Rodent: 

the multi-mammate Rat (Mastomys natalensis). It is mostly 

found in Sub-Saharan regions of Africa, the West African 

Countries like Liberia, Sierra Leone, Guinea and especially 

Nigeria who has been under its attack for the past seven 

decades [2]. The infection of the virus to human occurs by 

direct or indirect exposure to animal excrement through the 

respiratory or gastro intestinal tracts or eating contaminated 

food, touching soiled objects or exposure to open cuts or 

sores [5, 6, 10]. Signs and symptoms of Lassa fever 

typically occur 1-3 weeks after the patient comes in contact 

with the virus. Majority of Lassa fever virus infections 

show mild and undiagnosed symptoms which include slight 

fever, general weakness and headache while the serious 

cases progress to more severe signs like vomiting facial 

swellings pain in the chest, back abdomen and shock 

degenerating to hemorrhage (bleeding in gums, eyes or 

nose), thus showing symptomatic and asymptomatic signs 

[8, 9, 19]. Lassa fever has also been found to have some 

links with neurological problems which include hearing loss, 

which may be transient or permanent [7, 18]. It has been 

found that the disease has a high rate of transmission during 

sexual intercourse, the virus can be present in urine for 

between three and nine weeks after infection and it can be 

transmitted in semen for up to three months after becoming 

infected [3, 4, 15]. Lassa fever can be treated with antiviral 

drug ribavirin which has been very effective when given 

early in the course of the disease [19]. 

Various theoretical studies have been carried out on 

mathematical modeling of Lassa fever transmission 

dynamics, focusing on a number of different issues. [11-14], 

but not many focus on the symptomatic and asymptomatic 
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behavior of Lassa fever and the possibility of transferring it 

through sexual intercourse. We present a simple model with 

the goal of showing the effect of symptomatic and 

asymptomatic nature of the virus and the effect of 

quarantining in curbing the spread of the disease. 

2. Model Formulation 

We formulate a deterministic model for the spread 

dynamics and control of Lassa fever that considers human and 

vector population at a given time (t). The human population is 

divided into six compartments: susceptible humans 	�S�� , 

exposed humans�E��, infectious asymptomatic humans	�I�
�, 
infectious symptomatic humans �I��� , quarantine humans �I�
�, and the recovered humans�R��,	the total population of 

humans N��t�	is given by: 

N� = S� + E� + I�
 + I�� + I�
 + R�. 
On the other hand, vector population is divided into three 

compartments: susceptible vectors�S��, exposed vectors�E��, 
and the infectious vectors �I�� . The total population of 

vectors N��t�	is given by: 

N� = S� + E� + I�. 
The model parameters and their descriptions: Birth or 

immigration rate of humans into the susceptible human 

population	∧�, Birth or immigration rate of vectors into the 

susceptible vector population 	∧� , Natural death rate of 

humans and vectors through which they exist from their 

individual populations, μ�	 and 	μ�	 respectively. The disease 

induced death rate of human population of asymptomatic 

infectious humans and symptomatic infectious humans ω� and ω�  respectively, effective contact rate between 

asymptomatic infectious humans, symptomatic infectious 

humans, quarantine humans and infectious vector or its 

contaminants with the susceptible human are β�I�
S�, β�I��S�, 	β�I�
S�	and	β I�S� respectively, of 

which β� = β�I�
S�, β�I��S�, 	β�I�
S�	and	β I�S� . 

Effective contact rate between infectious vector and 

susceptible vector β !"#". Rate at which the exposed vectors 

move into the infectious population	γ�, recovery rate of the 

quarantine humans 	η , proportion of exposed that are 

asymptomatic 	aα , proportion of the exposed that are 

symptomatic �1 − a�) , latency period of Lassa fever in 

humans )*�and human infectious period δ. 
2.1. Assumptions 

1). There is homogeneous mixing of members of the 

population under consideration. 

2). Due to the yearly outbreaks of Lassa fever, there might 

be new births or inflow of susceptible individuals as well as 

natural deaths permitting a demographic process to take place. 

3). Infection is passed on through vector contaminants in the 

environment or through interaction with infectious humans. 

4). Individuals move to R	only from I�
 due to permanent 

immunity confer on them as a result of effective treatment. 

Table 1. Description of variables. 

S� Total number of susceptible population. ,- Total number of exposed population. I�
 Total number of infectious asymptomatic population. I�� Total number of infectious symptomatic population. I�
 Total number of quarantine population. R� Total number of recovered population. S� Total number of, susceptible vector population. E� Total number of exposed vector population. I� Total number of infectious vector population. 

2.2. Model Equations 

The transmissions between model classes can be expressed 

by the following system of first order differential equations: 

.�/.0 = Λʜ − β�I�
S� −	β�I��S� − β�I�
S� − β I�S� − μ� (1) 

.2/.0 = β�I�
S� +	β�I��S� + β�I�
S� + β I�S� − �α + μ��E� (2) 

.3/4.0 = aαE� − �δ + μ� + ω��I�
         (3) 

.3/5.0 = �I − a�αE� − �	δ + μ� +ω��I��     (4) 

.3/6.0 = �I�
 + I���δ − �μ� + 7�I�
             (5) 

.8/.0 = ηI�
 − μ�R�                         (6) 

.�9.0 =∧�− �β I� + μ� + φ��S�             (7) 

.29.0 = β I�S; − �γ� + μ� + φ��E;         (8) 

.39.0 = γ�E� − �μ� +φ��I�                     (9) 

With the initial conditions 	S��0� = S�� , E��0� =E�� , I�
�0� = I�
,� 	I���0� = I��� , I�
�0� = I�
� , R��0� =R�� , S��0� = S�� , E��0� = E�� , I��0� = I�� . The total human 

population N�	(t) is given by: 

N��t� = S��t� + E��t� + I�
�t� + I���t� + I�
�t� + R��t�. 
And satisfies the ordinary differential equation 

.=/.0 =∧�− μ�N� − ω�I�
 −ω�I�� + ηI�
. 

With the initial condition above, we obtain: 

.=/.0 ≤∧�− μ�N�                               (10) 

On the other hand, the total population of the vector is 

given by: 

N��t� = S��t� + E��t� + I��t�. 
This also satisfies the ordinary differential equation: 

.=9.0 ≤∧�− �μ� +φ��N�                       (11) 

In this section, we begin the model analysis by showing 

that all feasible solutions of the model system are uniformly 
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bounded in a set of Ω. Thus, the feasible region 

Ω = {�S�, E�, I�
, I��, I�
, R�, S;, E�, I;�	ϵ ℛAB :N� ≤C/D/ , N� ≤ C9D9AE9	}                        (12) 

Therefore, considering the derivatives of the human and 

vector population (1.10) and (1.11) respectively with proper 

substitutions and simplifications, we have: 

..0	 	�	S� +	E� +	I�
 +	I�� +	R�	� 	≤ C/D/, 

Therefore 

lim0→KN�	 �t� ≤ Λ�μ�  

And 

ddt	�S� +	E� + I�	� 	≤ Λ�μ� + φ�, 
lim0→K N�	(t)≤	 C9D9AE9. 

Hence, the feasible solution of the model equations (1.1)–

(1.9) enter the region Ω which is a positively invariant set. 

Thus, the system is both mathematically and 

epidemiologically well posed. Therefore, for an initial 

starting point	L	M	N, the trajectory of L	lies in Ω and so it is 

sufficient to restrict our analysis on Ω. So that under the 

dynamics described by the model equations in (1.1)–(1.9), 

the closed set Ω is positively invariant set. 

3. Model Analysis 

3.1. Existence and Uniqueness of Solutions 

Theorem 2.1[16, 17] 

Let	D� denotes the region 

|t − t�| ≤ b, x = �x�, x�, … . , xT�, x� = �x�� , x�� , … , xT��   (13) 

And suppose that f (t, x) satisfies the Lipchitz condition 

||f�t, x�� − �t, x��|| ≤ k||x� − x�||                 (14) 

Whenever the pairs �t, x�� and �t, x�� belongW�, where k is 

a positive constant. Then, there is a constant δ > 0 such that 

there exists a unique continuous vector solution x (t) of the 

system (2.1) in the interval |t − t�| ≤ δ. The condition (2.2) 

is satisfied by the requirement that 
Z[\Z]^ , i. j = 1, 2, … . . , n	be 

continuous and bounded in D�. Consider the region	1 ≤ ℰ ≤R, we check for a bounded solution of the form 0< R < ∞. 
Theorem 2.2 

Let D denotes the region defined earlier such that we can 

get both the region and the bounded solution hold, and then 

there exists a unique solution of the model system (1.1)–(1.9) 

which is bounded inD. 

Proof 

Let 

f� = Λʜ − β�I�
S� −	β�I��S� − d�I�
S� − β I�S� − μ� 

f� = β�I�
S� +	β�I��S� + β�I�
S� + β I�S� − �α + μ��E� 

f� = aαE� − �δ + μ� +ω��I�
 

f = �I − a�αE� − �δ + μ� + ω��I�� 

fe = �I�
 + I���δ − �μ� + 7�I�
 

ff = ηI�
 − μ�R� 

fg =∧�− �β I� + μ� +φ��S� 

fh = β;I�S; − �γ� + μ� + φ��E; 

fB = i"E� − �μ� + φ��I� 

We show that the 
Z[\Z]^ 	i, j = 	1,2,	…, 9 are continuous by considering the partial derivatives below: 

j ∂f�∂S�j = | − �β�I�
 + β�I�� + β�I�
 + β I� + μ��| < ∞ 

j∂f�∂I�j = |−β S�| < ∞, j ∂f�∂I�
j = | − β�S�| < ∞, j ∂f�∂I��j = | − β�S�| < ∞, l ∂f�∂I�
l = | − β�S�| < ∞, 
j ∂f�∂R�j = j ∂f�∂S�j = j ∂f�∂E�j = j ∂f�∂E�j = 0	 < ∞. 

j ∂f�∂S�j = m�β�I�
 + β�I�� + β�I�
 + β I� + μ��m, j ∂f�∂E�j = |−�α + μ��| < ∞, 
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j ∂f�∂I�
j = |β�S�|, j ∂f�∂I��j = |β�S�|, l ∂f�∂I�
l = |β�S�|, j∂f�∂I�j = |β S�|, j ∂f�∂R�j = j∂f�∂S�j = j ∂f�∂E�j = 0 < ∞, 
j ∂f�∂E�j = |aα|, j ∂f�∂I�
j = |−�δ + μ� + ω��| < ∞, 

j ∂f�∂S�j = j ∂f�∂I�
j = l ∂f�∂I�
l = j ∂f�∂R�j = j∂f�∂S�j = j ∂f�∂E�j = j∂f�∂I�j = 0 < ∞. 
j ∂f ∂E�j = |�1 − a�α|, j df ∂I��j = |−�δ + μ� +ω��| < ∞, 

j ∂f ∂S�j = 	 j ∂f ∂I�
j = l ∂f ∂I�
l = 	 j ∂f ∂R�j = j∂f ∂S�j = 	 j ∂f ∂E�j = 	 j∂f ∂I�j = 0 < ∞. 
j ∂fe∂I�
j = |δ|. j ∂fe∂I��j = |δ|, l ∂fe∂I�
l = |−�μ� + η�| < ∞, 

j ∂fe∂S�j = 	 j ∂fe∂E�j = 	 j ∂fe∂R�j = j∂fe∂S�j = 	 j ∂fe∂E�j = 	 j∂fe∂I�j = 0 < ∞. 
l ∂ff∂I�
l = |η|, j ∂ff∂R�j = |−μ�| < ∞, 

j ∂ff∂S�j = 	 j ∂ff∂E�j = j ∂ff∂I�
j = 	 j ∂ff∂I��j = j∂ff∂S�j = 	 j ∂ff∂E�j = 	 j∂ff∂I�j = 0 < ∞. 
j ∂fg∂S�j = |−�β I� + μ� + φ��| < ∞, j∂fg∂I�j = −|β S�|, 

j ∂fg∂S�j = 	 j ∂fg∂E�j = j ∂fg∂I�
j = 	 j ∂fg∂I��j = l ∂fg∂I�
l = j ∂fg∂R�j = 	 j ∂fg∂E�j = 0 < ∞, 
j ∂fh∂S�j = |β I�|, j ∂fh∂E�j = |−�γ� + μ� + φ��| < ∞, j∂fh∂I�j = |β S�|, 
n Z[oZ�/n = 	 n Z[oZ2/n = n Z[oZ3/4n = 	 n Z[oZ3/5n = j Z[oZ3/6j = 	 n Z[oZ8/n = 0 < ∞. 

j ∂fB∂E�j = |γ�|, j∂fB∂I�j = |−�μ� +φ��| < ∞, 
j ∂fB∂S�j = 	 j ∂fB∂E�j = j ∂fB∂I�
j = 	 j ∂fB∂I��j = l ∂fB∂I�
l = 	 j ∂fB∂R�j = 	 j ∂fB∂S�j = 0 < ∞. 

This shows that the partial derivatives are continuous and 

bounded, so that theorem (2) holds, there exists a unique 

solution of (1.1)–(1.9) in the region D. 

3.2. Disease Free-Equilibrium Analysis. 

To perform the disease free - equilibrium analysis of the 

model and to understand better the dynamics of the disease, 

we set each of the derived equations to equate zero and solve 

for S�, E�, I�
, I��, I�
, R�, S�, E�and	I�.  We will get fixed 

points for each compartment for which the system will no 

longer change. Solving the model equations to obtain this 

state, we have: 

Λʜ − β�I�
S� −	β�I��S� − d�I�
S� − β I�S� − μ�S� = 0 (15) 

β�I�
S� +	β�I��S� + β�I�
S� + β I�S� − �α + μ��E� = 0 (16) 

aαE� − �δ + μ� + ω��I�
 = 0                    (17) 

�I − a�αE� − �δ + μ� + ω��I�� = 0                 (18) 

�I�
 + I���δ − μ�I�
 = 0                         (19) 

ηI�
 − μ�R� = 0                               (20) 

∧�− �	β I� + μ� + φ��S� = 0                         (21) 

β I�S; − �γ� + μ� + φ��E; = 0                       (22) 

γ�E� − �μ� + φ��I� = 0                         (23) 

Solving equations (3.1)–(3.9) simultaneously we obtain: 

E� = �S�, E�, I�
, I��, I�
, R�, S�, E�, I�� =



114 Anorue Onyinyechi Favour and Okeke Anthony Anya:  Mathematical Model for Lassa Fever Transmission and Control  

 

p∧/D/ , 0,0,0,0,0, ∧9�D9AE9� , 0,0q  

as the disease free - equilibrium state. 

3.3. Basic Reproduction Ratio 

The basic reproductive ratio (number) R�  is used in 

determining the transmission capability of the disease. It is 

taken to be the average number of secondary diseases 

delivered by a primary case of an infection in a host 

population that is completely susceptible. R�  is a threshold 

parameter that decides if a disease can strive in a population. 

If 	R� < 1 , then the disease will die out with time in the 

population. If not, it will lead to endemic state in the 

population. 

We use the next generation operator to compute the 

reproductive ratio R� = FV*� which gives the  

rate at which individuals in compartment j generate new 

infections in compartment i times average length of time 

individuals spend in single visit to compartment j. Let F be 

defined as the Jacobian of	ft where	ft is the rate of appearance 

of new infection in the compartment i and V is defined as the 

Jacobian of vv  where vv	is the rate of transfer of infections 

from infected compartment to another compartment j, all 

represented in a matrix form. 

Define ft = �E�, I�
, I��, I�
, E�, I�� 

f =
w
xxy
β�l�
S� + β�I��S� + β�I�
S� + β I�S�000β I�S�0 z

{{| 

v =
w
xxx
y

−�α + μ��E�−aαE� + �δ + μ� +ω��I�
−�1 − a�αE� + �δ + μ� + ω��I��−�I�
 + I���δ + �μ� + η�I�
�γ� + μ� + φ��E�−γ�E� + �μ� + φ��I� z
{{{
|

 

Taking the partial derivatives of f and v at disease-free 

equilibrium state, we obtain the following for f and v 

respectively, represented as: 

F =
w
xxy
}₁₁ 0 }₁₃ }₁₄ 0 }₁₆0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 }₅₅0 0 0 0 0 0 z

{{| 

Where m�� = ��∧/D/ , m�� = ��∧/D/ , m� = ��∧/D/ , m�f = ��∧/D/ , mee = ��∧9D9AE9. 

And also V =
w
xx
y
−�₁₁ 0 0 0 0 0−�₂₁ �₂₂ 0 0 0 0−�₃₁ 0 �₃₃ 0 0 00 −�₄₂ −�₄₃ �₄₄ 0 00 0 0 0 �₅₅ 00 0 0 0 −�₆₅ �₆₆z

{{
|

 

Where a�� = −�α + μ��, a�� = −aα, a�� = �δ + μ� + ω��, a�� = −�1 − a�α, a�� = �δ + μ� +ω��, a � = −δ, a � = −δ, a  = �μ� + η�, aee = �γ� + μ� + φ��, afe = γ�, aff = �μ� +φ��. 

V*� =

w
xx
xx
xx
xx
xx
y

1a₁₁ 0 	0
aαa₁₁a₂₂ 1a₂₂ 	0
a₃₁a₁₁a₃₃ 0 	 1a₃₃

0	 0	 00	 	0	 00	 0	 0

a₂₁a₃₃a₄₂ + a₂₂a₃₁a₄₃a₁₁a₂₂a₃₃a₄₄ a₄₂a₂₂a₄₄ a₄₃a₃₃a₄₄0 0 00 0 0

1a₄₄ 0 0
0 1a₅₅ 0
0 a₆₅a₅₅a₆₆ 1a₆₆z

{{
{{
{{
{{
{{
|
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R� = FV*� =
w
xxy
}₁₁ 0 }₁₃ }₁₄ 0 }₁₆0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 }₅₅0 0 0 0 0 0 z

{{|

w
xx
xx
xx
y

��₁₁ 0 	0
���₁₁�₂₂ ��₂₂ 	0
�₃₁�₁₁�₃₃ 0 	 ��₃₃

0	 0	 00	 	0	 00	 0	 0
�₂₁�₃₃�₄₂A�₂₂�₃₁�₄₃�₁₁�₂₂�₃₃�₄₄ �₄₂�₂₂�₄₄ �₄₃�₃₃�₄₄0 0 00 0 0

��₄₄ 0 0
0 ��₅₅ 0
0 �₆₅�₅₅�₆₆ ��₆₆z

{{
{{
{{
|

  

�� = β ∧��μ� + φ���γ� + μ� +φ�� 
3.4. Stability Analysis of Disease Free-Equilibrium State 

In stability of the model, we look at the behavior of the population near the equilibrium state. The Jacobian matrix of the 

system of equations (1.1)–(1.9) at equilibrium E� is given by 

:	�,� =

w
xx
xx
xx
y−�- 0 *��������

*��������
*�������� 0 0 0 *�������A����- −�) + �-� 0 0 0 0 0 0 00 �) −�� + �- + ��� 0 0 0 0 0 00 �1 − ��) 0 −�� + �- + ��� 0 0 0 0 00 0 � � −��- + 7� 0 0 0 00 0 0 0 7 −�- 0 0 00 0 0 0 0 0 −�d !" + �" + �"� 0 00 0 0 0 0 0 d !" −�i" + �" +�"� 00 0 0 0 0 0 0 i" −��" +�"�z

{{
{{
{{
|

 

Using elementary row transform on the following matrix below: 

w
xx
xx
y
−a� 0 −a� −a� −a 0 0 −aeb� −b� 0 0 0 0 0 00 c� −c� 0 0 0 0 00 d� 0 −d� 0 0 0 00 0 e� e� −e� 0 0 00 0 0 0 0 −g� 0 00 0 0 0 0 h� −h� 00 0 0 0 0 0 j� −j�z

{{
{{
|

 

We obtain 

w
xx
xx
y
−k� 0 0 0 0 0 0 0b� −b� 0 0 0 0 0 00 c� −c� 0 0 0 0 00 d� 0 −d� 0 0 0 00 0 e� e� −e� 0 0 00 0 0 0 0 −g� 0 00 0 0 0 0 h� −h� 00 0 0 0 0 0 j� −j�z

{{
{{
|

  

Where 

a� = −μ�, a� = −�β�Ʌ��μ� , a� = −�β�Ʌ��μ� , a = −�β�Ʌ��μ� , ae = −�β Ʌ��μ�  

�� = μ�, b� =	−�α + μ��, 
	c� = aα, 	c� = −�δ + μ� + ω��, d� = �1 − a�α, d� = −�δ + μ� +ω��, e� = δ, e� = δ, e� = −�μ� + η� 

g� = −�β I� + μ� + φ��, h� = β I�, h� = �γ� + μ� + φ��, j� = γ�, j� = −�μ� + φ��. 
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k� = −a� − �b� ∗ ���∗p��* �∗¡�¡� q
�� − .�∗p��A �∗¡�¡� q

.� ¢�/b�. 

Hence the eigenvalues are: 

λ� = k�, λ� = b�, λ� = c�, λ = d�, λe = e�, λf = g�, λg = h�andλh = j�. 
When λt ≤ 0 for all i = 1,2, … ,8 the system is said to be 

locally asymptotically stable at disease-free equilibrium. 

Since all the eigenvalues have negative real paths, we say 

that R� < 1  showing locally asymptotically stability which 

ends the proof. The disease gradually dies out at this point. 

3.5. Global Stability State for the Disease-Free Equilibrium 

The global asymptotic stability of the disease-free state of 

the model is investigated using the theorem by Castillo- 

Chavez et al (2002). The model is written into the form: 

dXdt = F�X, I� 
.3.0 = G�X, I�, G�X, 0� = 0                       (24) 

Where XϵR¨	 denotes (its components) the number of 

uninfected individuals and IϵRT denotes (its components) the 

number of infected individuals including latent, infectious 

etc.,� = �©∗, 0� denotes the disease-free equilibrium of this 

system. 

The conditions (H1) and (H2) below must be met to 

guarantee local asymptotic stability. 

(H1) 
.ª.0 = F�X, 0�, X∗ is globally asymptotically stable. 

(H2) G�X, I� = AI − Ĝ�X, I�, Ĝ�X, I� ≥ 0	for �X, I�ϵΩ. 

Where A = ZZ̄3 �X∗, 0�  is an M–matrix (the off diagonal 

elements of A are nonnegative) and Ω is the region where the 

model makes biological sense. 

Then the disease- free equilibrium E� = �X∗, 0� is globally 

asymptotically stable provided that �� ≤ 1. 
LetX = �S�, R�, S��, I = �E�, I�
, I��, I�
, E�, I��. 

F�X, 0� = ° Λ� − μ�S�μ�R�Λ� − �μ� + φ��S�± 

The equations are linear and its solution can be easily 

found as R��t� = R�0�eD/�²�, 
S��t� = �S��0��e³�´��µ� and S��t� = �S��0��¶ ∧9�·9¸¹9��µ�. 
Clearly, R��t� → 0, S��t� → N�as	t → ∞ and S��t� →N�	as	t → ∞. 

Next we show that condition (H2) is greater than or equal 

to zero as follows: 

G�X, I� =
w
xxx
y
β�I�
S� + β�I��S� + β�I�
S� + β I�S� − �α + μ��E�aαE� − �δ + μ� + ω��I�
�1 − a�αE� − �δ + μ� +ω��I���I�
 + I���δ − �μ� + η�I�
β I�S� − �γ� + μ� +φ��E�γ�E� − �μ� + φ��I� z

{{{
|

 

AI =
w
xxx
y
−�α + μ�� β�S� β�S� β�S� 0 β S�aα −�δ + μ� + ω�� 0 0 0 0�1 − a�α 0 −�δ + μ� + ω�� 0 0 00 δ δ −�μ� + η� 0 00 0 0 0 −�γ� + μ� + φ�� β S�0 0 0 0 γ� −�μ� + φ��z

{{{
|
w
xx
y
E�I�
I��I�
E�I� z

{{
|

 

Ĝ =
w
xx
xx
y0 + β�I�
 »Λ�μ� − S�¼ + β�I�� »Λ�μ� − S�¼ + β�I�
 »Λ�μ� − S�¼ + 0 + β I� »Λ�μ� − S�¼000

β I� » Λ��μ� +φ�� − S�¼0 z
{{
{{
|

 

If Ĝ = �©, !� = �S�∗ > S��	and	�S�∗ > S��  we see that ,� = ©∗ = p���� , 0,0,0,0,0, ����A�� , 0,0q  is the global asymptotical 

stability of equilibrium of 
½¾½µ = 	¿�©, 0�. 
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Table 2. Parameter, Descriptions, Values and References. 

Parameters Descriptions Values Sources À- Birth or Immigration rate of Susceptible human population, 2000 18 À" Birth or Immigration rate of Susceptible vector population, 500 18 �- Natural death rate of humans 0.02 CIA-2017 �" Natural death rate of vector 0.02 18 d- Effective contact rate between infective vector or its contaminants with the Susceptible human per contact. 0.08 18 dÁ Effective contact rate between Infectious vector and Susceptible vector per contact. 0.02 Estimated �" Human induced control 0.02 18 i" Rate at which the exposed vectors move into the infectious population. 0.001 Estimated 

Η Recovery rate of the quarantined humans 0.25 Estimated 

A Proportion of exposed that are asymptomatic 0.15 Estimated 
(1-a) Proportion of exposed that are symptomatic 0.15 Estimated )-*� Latency period of Lassa fever in humans days, 3 – 14 0.5 19 �-*� Human Infectious period days, 3 – 5 0.25 Estimated �� Lassa fever induced death rate of Asymptomatic infected humans per contact per day. 0.00019231 19 �� Lassa fever–induced death rate of Symptomatic infected humans per contact per day. 0.00019231 19 

 

4. Result and Discussion 

In this research work, the disease free equilibrium was 

analyzed. The next generation matrix method was used to 

calculate the reproduction number which showed that R� < 1 

when locally asymptotically stable, which will lead to a 

reduction in the spread of the disease. Using the Castillo-

Chavez theorem, we established the global asymptotic stability 

of the disease-free equilibrium which indicates that the use of 

quarantine will help in submerging the emergence of new 

infectious diseases and put in serious check the hazardous 

movement of the infected thereby bringing to a great reduction 

in the continuity of the disease in the population. 

Numerically the model equations using the parameter values 

displayed in Table 2 with the aid of mat lab clearly showed us 

that there exists the symptomatic and asymptomatic behavior 

of the virus. Although the symptomatic individuals are highly 

infectious, the asymptomatic individuals also contributed to 

the spread of the disease putting the susceptible population at a 

great risk. The isolation of asymptomatic and symptomatic 

individuals respectively on early diagnosis helped to endanger 

the lives of those exposed to the disease as immediate 

treatment is given, thereby reducing the spread of the disease if 

kept consistent. Hence there will be a drastic reduction on the 

number of the exposed individuals. A relapse in this technique 

could lead to a drop on the recovery rate which will lead to 

reinfection of the disease in the population. 

5. Conclusion 

In this work, a determistic mathematical model was formed 

incorporating the quarantine system as the major control 

measure alongside others. The analytic behaviour of the model 

showed that the disease-free equilibrium of the model is both 

locally and asymptotically stable if the reproduction number of 

the model is less than 1 and unstable if it is greater than 1. 

From the graph, it is observed that the quarantine system has a 

significant effect in increasing the rate of recovering of 

humans down with the disease and lowering the rate of 

contraction of the disease. Therefore we suggest that the 

continuous use of quarantine system should be employed and 

sustained alongside other control measures for all members of 

the population where lassa virus is dominant. 

 

Figure 1. The plot of behavioral graph of humans on quarantining against time t. 
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