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Abstract 

The Hoffman’s algorithm to test equivalency of linear codes is one of the techniques that have been used over the years; it is 

achieved by a comparison of codewords of the linear codes. However, this comparison technique becomes ineffective in 

instances where it is applied to linear codes with larger dimensions as it requires much run time complexity, space and size in 

comparing the codewords of each linear code. This paper proposes an optimised algorithm for testing the equivalency of linear 

codes, specifically addressing the limitations of the Hoffman method. To assess and compare the efficiencies of the Hoffman 

algorithm and the optimised algorithm, a set of nine carefully selected linear codes were subjected to equivalency testing. The 

CPU runtime of both algorithms was recorded using the C++ chrono library. The recorded runtime data was then utilized to 

create a scatter plot, offering a visual representation of the contrasting trends in CPU runtime between the two algorithms. The 

plot clearly indicate exponential growth in CPU runtime for the Hoffman algorithm as the length and dimension of the linear 

codes increases, in contrast, the proposed algorithm showcased a minimal growth in CPU runtime, indicating its superior 

efficiency and optimised performance. 
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1. Introduction 

Security in communication systems has historically been 

obtained through cryptographic means which uses concept of 

coding. Recent research has focused in this aspect and has 

unveiled ample opportunity for security design [1]. 

Equivalency of linear code is a major aspect in coding 

theorem; over the years, algorithms have been developed to 

aid the test for equivalency of linear codes, for instance, the 

support splitting algorithm deduces the permutation that ex-

ists between equivalent linear binary codes [2]. Testing for 

equivalency of linear codes is equally necessary and is not 

catered for by the support splitting algorithm. Code equiva-

lence is a basic concept in coding theory with several appli-

cations in code-based cryptography; the McEliece public-key 

cryptosystem, Girault’s Identification scheme and the Cour-
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tois-Finiasz-Sendrier (CFS) signature scheme [3], to name a 

few. The notion of equivalence of linear codes used in 

code-based cryptography usually involves only permutations 

as the code alphabet is the binary field. However, this is by far 

the case in coding theory where for a more general notion of 

equivalence all isometries of the Hamming space have to be 

included. 

A research work on linear code equivalence as indicated in 

[4] dealt with the problem of deciding if two finite dimen-

sional linear subspaces over an arbitrary field are identical up 

to a permutation of the coordinates. The researchers showed 

that given access to a subroutine that decides if weighted 

undirected graphs are isomorphic, one may deterministically 

decide the permutation code equivalence, provided that the 

underlying vector spaces interest trivially with their orthog-

onal complement with respect to an arbitrary inner product. 

The code equivalence problem is to decide whether two 

linear codes over F_q are equivalent. Testing for equivalency 

of linear codes require comparison of codewords of the linear 

codes i.e. scanning the bits of the codewords, [5]. The com-

parison technique which was used by the previous study be-

comes ineffective as the dimension k or length n of the code 

increases. The factors which are to be considered in measur-

ing efficiency of algorithm are time complexity, space com-

plexity, administrative cost and faster implementation. One of 

the effective methods for studying the efficiency of algorithm 

is the Big O-Notation, [6]. The comparison technique be-

comes ineffective in the sense that when it is subjected to a 

linear code with large dimension or length, much resources i.e. 

run time complexity, space and size are required in comparing 

the codewords of each linear code. Moreover, comparing 

algorithms with their theoretical time complexity boundaries 

can be achieved by analysing the behaviour of the algorithm 

implementation in real environment, [7]. This suggests that to 

efficiently measure time complexity of an algorithm, it has to 

be subjected to real and applicable system or data which for 

this paper is linear code and the algorithm being equivalency 

test algorithm. Time complexity is known as one of the tasks 

of a comprehensive algorithm analysis, the objective of 

analysis is to obtain a function which for a given size of the 

problem estimates the time needed for the algorithm to exe-

cute successfully [8]. 

Al-Khwarizmi in his write up “About Indian Counting” 

explained algorithms of four arithmetic operations. Compar-

ing Roman and decimal counting systems. He wrote “... we 

decided to explain Indian counting with IX letter, which they 

use to explain any of their digits for ease and brevity facili-

tating business for any person, who is learning arithmetic”, [9]. 

The three words used here i.e. easy, brevity and facilitation – 

in algorithm can be explained as “complexity”. Several works 

have discussed methods for calculating time complexity for 

combinational and sequential schemes; some of these also 

deduced a formula to calculate the time complexity of 

SH-Model of algorithm, [9]. The concept of time complexity 

is one that is central to the theory of algorithms. During the 

last century it was clarified with the development of the theory 

and practice of computing and the appearance of new models 

of algorithms. As a result of this clarification, nowadays there 

are several options of estimation of complexity of algorithm 

objects. Theoretical analysis is often complicated and has 

other drawbacks as well. Therefore, empirical analysis of time 

complexity is preferred and can be used in measuring effi-

ciency in terms of execution time of an algorithm.  

There exists data how to measure efficiency/time com-

plexity of algorithms by running algorithms on problems of 

different sizes as demonstrated in [8]. This suggest that time 

complexity of algorithm can be measured by executing the 

algorithm on different sizes of problem which for this study 

are equivalent linear codes. Another work focused on itera-

tions (loops, and recursive calls) from which to build a tree, 

[10]. For each node the total number of repetitions which is a 

function of input size. The tool does not contain an automatic 

calculation of beehive that fit the measurement but is calcu-

lated manually. Yet again, another research recorded how 

many times a base block is executed; in most cases, this is a 

line of procedure by method clustering then combines the 

blocks and finds the linear potential function that fit better, 

[11]. The tool at the entrance expects test cases of different 

sizes, to be determined by the user. A new form of graph 

referred to as complexity plots, where there are complexity 

classes on the x-axis and size on the y-axis problems was 

introduced in [12]. The approach is interesting because the 

values on the x-axis are without units, an estimation is done 

but with estimations function that best fit the measurements. 

 
Figure 1. Possible time complexities of algorithms. 

One of the straightforward definitions for optimisation is 

“doing the most with the least” [13]. Another study by [14] 

opined that algorithms with time complexity of O(n2) in most 

scenarios and particularly for large datasets take a lot of time 

to execute and should be avoided as it needs a lot of resources 

thereby deducing equivalency of linear code by comparison of 

codewords is inefficient as its time complexity, O(k*n), where 

k and n are the dimension and length of the linear codes re-

spectively. Figure 1 illustrates the possible time complexities 

of algorithms. 
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2. Materials and Methods 

2.1. Feasibility and Study Phase 

The main aim here is to ascertain whether optimizing the 

equivalence algorithm in [5] is feasible. After a careful col-

lection of data concerning time of execution of Hoffman’s 

equivalency test algorithm, it was clear that the new algorithm 

will be both logically and technically feasible. Technically, 

the new algorithm can be implemented in C++ (see plus-plus) 

which is very comfortable to program with and has accurate 

measurement of program execution time. 

2.2. C++ as a Program Execution Time  

Measurement Tool 

C++ is a general-purpose programming language created as 

an extension to the C programming language. The use of C++ 

expanded significantly over time and modern C++ now has 

object-oriented, generic and functional feature in addition to 

features for low-memory manipulation. The design of C++ 

was geared system programming and embedded, re-

source-constrained software and large systems, with perfor-

mance, efficiency, and flexibility of use as its design high-

lights [15]. C++ has a library that was introduced in C++ 11, 

which is able to find out time taken by different parts of pro-

gram using std:: chrono, hence the main reason for imple-

menting the new algorithm in using C++ [16]. Furthermore, 

the std: chrono has two distinct instances which are timepoint 

and duration. A timepoint represents a point in time whereas a 

duration represents the interval or span of time. The C++ 

library enables us to subtract two timepoints to get the interval 

of time passed in between. The std:: chrono also provides us 

with three clocks with varying accuracy. The 

high_resolution_clock is the most accurate and hence it is 

used to measure execution time. 

2.3. Source of Data and Data Analysis 

The primary data that is used in this paper constitutes time 

complexities of the [5] algorithm as well as that of the estab-

lished algorithm which was recorded on execution of the two 

algorithms on different sizes of linear code. 

The most efficient algorithm can be said to be one that takes 

the least amount of execution and memory usage possible 

while yielding accurate result. To measure the runtime of an 

algorithm with the aim of determining its efficiency one must 

implement the algorithm in an actual programming language 

[17]. To ensure accuracy in the Central Processing Unit (CPU) 

time recordings, the two algorithms were implemented as a 

C++ application as it has CPU runtime measure libraries. 

Scatter plot which is an analysis tool provided by MATLAB 

and also a visualization tool is used in analysing the data. The 

analyses of these data give room to measure efficiency and 

accuracy of the two algorithms. 

2.4. Scatter Plots 

Quantification leads to precision provided by numbers. 

Numerical representation of behaviour of quantitative meas-

urement serves as the medium through which all analysis 

occurs, [18]. Conducting research on analysis, [18] indicated 

that out of 4313 reviewed graphs, 3560 had a quantitative 

scaled vertical axis. In other words, 83% of the reviewed 

graphs prominently displayed behaviour as a quantity. In 

analysis, data is graphed for each participant during a study 

with trend, level and stability of data assessed within and 

between conditions [19]. 

A scatter plot is used in visualizing the data collected 

graphically as it is commonly used to display change over 

time as a series of data points. The scatter plot therefore ena-

bles researchers to determine the relationship between sets of 

values with one dataset always being dependent on the other 

set. Scatter plots are powerful visual tools that illustrate trends 

in data over a period of a particular correlation. Furthermore, 

Scatter plots is a useful tool in that it shows data variables and 

trends clearly and can enable researchers to make predictions 

about the results of data not yet recorded hence its adoption to 

compare efficiency of (Hoffman et al., 1991a) algorithm and 

the proposed algorithm. 

2.5. Linear Code Generation 

Two linear codes of the same length can be combined to 

develop a third code which will be twice the length in a way 

similar to the direct sum of the code’s construction. The di-

mension of the newly formed code can therefore be a 

,2𝑛, 𝑘1 + 𝑘2,  min(2𝑑1 + 𝑑2)-  linear code [20]. Generator 

matrix of the newly formed linear code is given as. 

(
𝐺1 𝐺1

0 𝐺2
)                   (1) 

The [4,1,4] linear code as used by [20] is adopted as the 

primary linear code in the paper. 

2.6. Gilbert Varshamov Bound 

To determine if the generated linear codes exists, Gilbert 

Varshamov bound as implemented by (Hoffman et al., 1991b) 

is adopted: 

Theorem: There exist a linear code of length n, dimension k 

and distance d if 

.
𝑛 − 1

0
/ + .

𝑛 − 1
1

/ + ⋯ + .
𝑛 − 1
𝑑 − 2

/ < 2𝑛−𝑘    (2) 

Corollary: If 𝑛  1, 𝑑  1 then there exists an (𝑛, 𝑘, 𝑑) 

linear code with 

|𝑐| ≥
2𝑛−1

.𝑛−1
0 /+.𝑛−1

1
/+⋯+ .𝑛−1

𝑑−2
/
            (3) 
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The corollary is a lower bound for the number of words in a 

linear code of length 𝑛 and distance 𝑑. 

2.7. Hamming Bound 

Theorem: Let   be a code of length 𝑛  and d 2𝑡 + 1 

then the number of words in the code is given as 

|𝑐| ≤
2𝑛

(
𝑛
0)+(

𝑛
1)+⋯+(

𝑛
𝑡 )

               (3) 

The Hamming bound is an upper bound for the number of 

words in a linear code of length n and distance 𝑑  2𝑡 + 1. 

3. Results and Discussion 

3.1. The Proposed Linear Equivalency Test  

Algorithm 

The proposed algorithm is based on [5] equivalency test 

algorithm but it does not compare corresponding words unlike 

the case presented in [5]. The aim is to improve efficiency and 

accuracy of Linear code equivalent test algorithm. It ignores 

the zeros in the codewords and take note of the position of the 

ones in the codewords before determining the equivalency. 

Not considering the zero codewords further makes the algo-

rithm more efficient as it reduces the number of bits to work 

with. However, to test the accuracy of the algorithm, it has 

been subjected to codes of 2𝑛 length where 𝑛  2,3,4. 

Steps of the proposed algorithm: 

Check if the two codes, C and    are linear codes by ver-

ifying that the two codes satisfy the properties of a linear code. 

Locate the positions of 1’s in the codewords of C and C '. 

Find 𝑑  𝑑1 − 𝑑2, where 𝑑1 and 𝑑2 are the positions of 

1’s in codewords of C and    respectively. 

Compute sum of d’s denoted by ∑𝑑 

If ∑𝑑  0 then   ≅    ' otherwise they are not equiva-

lent. 

Examples of linear codes and its equivalence by the algo-

rithm in [5] are presented in tabular form tables 1, 2 and 3. 

Table 1. Example of Linear code of length 2 with A and B repre-

senting each bit and its equivalent code derived from pattern 2,1. 

A B A B 

0 0 0 0 

0 1 1 0 

1 0 0 1 

1 1 1 1 

*Original Code | Derived Code. 

Table 2. Example of Linear code of length 3 with A, B and C repre-

senting each bit and its equivalent code derived from pattern 2,3,1. 

*Original code 

A B C 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

*Equivalent code with pattern 2,3,1 

A B C 

0 0 0 

0 1 0 

1 0 0 

1 1 0 

0 0 1 

0 1 1 

1 0 1 

1 1 1 

Table 3. Example of Linear code of length 4 with A, B, C and D 

representing each bit and its equivalent code derived from pattern 

1,3,2,4. 

*Original code 

A B C D 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 
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A B C D 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 

*Equivalent code with pattern 1,3,2,4 

A B C D 

0 0 0 0 

0 0 0 1 

0 1 0 0 

0 1 0 1 

0 0 1 0 

0 0 1 1 

A B C D 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 1 0 0 

1 1 0 1 

1 0 1 0 

1 0 1 1 

1 1 1 0 

1 1 1 1 

3.2. Illustrative Example (Simulation) 

Table 4 illustrates the usage of the proposed algorithm us-

ing linear code in Table 3 when n= 4 i.e. A, B, C and D 

Table 4. Simulation of Proposed Algorithm. 

Original code 

A B C D 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 1 

0 1 0 0 

0 1 0 1 

0 1 1 0 

0 1 1 1 

1 0 0 0 

1 0 0 1 

1 0 1 0 

1 0 1 1 

1 1 0 0 

1 1 0 1 

1 1 1 0 

1 1 1 1 
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Equivalent code with pattern {1,3,2,4} 

A B C D Position of 1’s in C Position of 1’s in C ' Diff. SUM 

0 0 0 0 0 0 0 0 

0 0 0 1 4 4 0 0 

0 1 0 0 3 2 -1 -1 

0 1 0 1 3 4 2 4 -1 0 -2 

0 0 1 0 2 3 +1 -1 

0 0 1 1 2 4 3 4 +1 0 0 

0 1 1 0 2 3 2 3 0 0 0 

0 1 1 1 2 3 4 2 3 4 0 0 0 0 

1 0 0 0 1 1 0 0 

1 0 0 1 1 4 1 4 0 0 0 

1 1 0 0 1 3 1 2 0 -1 -1 

1 1 0 1 1 3 4 1 2 4 0 -1 0 -2 

1 0 1 0 1 2 1 3 0 1 -1 

1 0 1 1 1 2 4 1 3 4 0 1 0 0 

1 1 1 0 1 2 3 1 2 3 0 0 0 0 

1 1 1 1 1 2 3 4 1 2 3 4 0 0 0 0 0 

 

It is noticed that the algorithm sums up to which indicates 

that the two codes are equivalent. 

3.3. The Equivalence Test Algorithm by [5] 

Input 

   *𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛+ 

   *𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛+ 

Output: 𝑐 and 𝑐  are equivalent or are not equivalent 

Steps 

1) Check if   and    are linear codes 

2) Check    and verify if its codewords are all permuted 

from   with same pattern. 

3) If step 2 check is true   and    are equivalent other-

wise not equivalent 

4) End program 

The linear code equivalence problem in [5] is solved by 

comparing the codewords of the linear codes in question. 

Executing the algorithm on large length/dimension of linear 

codes will result in a situation where more resources will be 

required and the cost of implementation will also be high. 

Illustrative example of [5] algorithm 

  *0000,1011,0101,1110+ 

   *0000,1110,0101,1011+ 

By comparing the codewords of   and   , 1432 ar-

rangement of   is constant in    hence the two codes are 

equivalent. 

3.4. Performance Evaluation on Algorithm 

Runtime 

The runtime of the proposed algorithm was compared to the 

existing algorithm by [5], using different length and dimen-

sions of codewords. This comparison is shown in Table 5. 
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Table 5. Runtime Comparison of the Hoffman Algorithm and the Proposed Algorithm. 

Length (n) Dimension (k) Hoffman Algorithm Runtime (μs) Proposed Algorithm Runtime (μs) 

8 2 995 541 

16 4 1031 548 

32 8 1601 550 

64 16 1998 557 

128 32 15715 4006 

256 64 48401 12764 

512 128 239097 65436 

1024 256 1580359 489754 

2048 512 12166397 3510342 

Table 5 gives CPU the runtime on executing the Hoffman equivalent test algorithm and the proposed test algorithm on various 

lengths and dimensions of linear codes. 

The CPU runtime recorded for the Hoffman Equivalent Test algorithm suggests that the time taken to deduce equivalency of 

linear code using the algorithm grows exponentially whilst that of the proposed algorithm increases constantly. 

 
Figure 2. Scatter plot showing relationship between the algorithms CPU runtimes against the various length of Linear codes. 
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Figure 3. Scatter plot showing relationship between the algorithms CPU runtimes against the dimensions of Linear codes. 

Figures 2 and 3 clearly show that with Hoffman equivalent 

test algorithm, the CPU runtime increases rapidly as the 

Length (n) and dimension (k) of linear codes increase as op-

pose to that of the proposed algorithm hence the proposed 

algorithm is therefore more efficient in deducing equivalency 

of linear codes. 

3.5. Existence of Linear Codes Test 

The following ,𝑛, 𝑘, 𝑑- linear codes were used to measure 

the efficiency of Hoffman’s algorithm and the proposed al-

gorithm. 

,8,2,4- 

,16,4,4- 

,32,8,4- 

,64,16,4- 

,128,32,4- 

,256,64,4- 

,512,128,4- 

,1024,256,4- 

,2048,512,4- 

The chosen linear codes were tested to ascertain if they do 

exist using the theorem of Gilbert Varshamov bound as fol-

lows: 

𝑛  8, 𝑘  2, 𝑑  4 

 .
7
0
/ + .

7
1
/ + .

7
2
/ 

 1 + 7 + 21 

 29 

𝐴𝑙𝑠𝑜, 28−2 

 26   64 

29 < 64 𝑡𝑟𝑢𝑒 

Therefore, the linear code [8,2,4] does exists. 

𝑛  16, 𝑘  4, 𝑑  4 

 .
15
0

/ + .
15
1

/ + .
15
2

/  

 1 + 15 + 105  

 121  
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𝐴𝑙𝑠𝑜, 216−4  

212  4096  

121 < 409 *𝑡𝑟𝑢𝑒+  

Hence the linear code [16,4,4] exists. 

𝑛  32, 𝑘  8,   𝑛  4 

 .
31
0

/ + .
31
1

/ + .
31
2

/  

 1 + 31 + 465  

 497  

𝐴𝑙𝑠𝑜, 2𝑛−𝑘   232−8  

 224  

 16,777,216  

497 < 16,777,216 *𝑡𝑟𝑢𝑒+  

This implies linear code [32,8,4] exists. 

𝑛  64, 𝑘  16, 𝑑   4 

  .
63
0

/ + .
63
1

/ + .
63
2

/ 

 1 + 63 + 1953 

 2017 

𝐴𝑙𝑠𝑜, 264−16 

248   281474976710656 

2017 < 281474976710656 *true+ 

This implies that linear code [64, 16, 4] exists 

From the existence proof of the first four linear codes using 

the Gilbert Varshamov theorem, it can be concluded that 

higher dimensions in the format ,2𝑛, 𝑘1 + 𝑘2, min(2𝑑1, 𝑑2)- 

will always exist. 

4. Conclusions 

This paper sought to optimise the Hoffman equivalent test 

algorithm and establish an efficient algorithm that can deter-

mine equivalency of linear codes and further use the optimised 

algorithm to enhance data access security. After, the generation 

of the optimised equivalent test, we then employed the ap-

proach in [20] for generating generator matrices from existing 

linear codes with parameter ,𝑛, 𝑘, 𝑑- to generate our linear 

codes. Further, the efficiencies of the Hoffman equivalency test 

algorithm and that of the proposed algorithm were subjected to 

check for equivalency of linear codes with parameters [8,2,4], 

[16,4,4], [32,8,4], [64,16,4], [128,32,4], [256,64,4], 

[512,128,4], [1024,256,4] and [2048,512,4]; the CPU runtimes 

of the two algorithms were measured using the C++ Chrono 

library and the results visualised with scatter plots. It was 

clearly observed that the CPU runtime of the Hoffman algo-

rithm increases rapidly as the dimension and size of the linear 

codes increase whiles the increase in runtime of proposed al-

gorithm is minimal. Thus, the proposed algorithm is a more 

efficient route for the equivalency test of linear codes. 
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