
Mathematics and Computer Science

2024, Vol. 9, No. 2, pp. 26-35

https://doi.org/10.11648/j.mcs.20240902.11

*Corresponding author:

Received: 26 March 2024; Accepted: 10 April 2024; Published: 29 April 2024

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

An Optimised Hoffman Algorithm for Testing Linear Code

Equivalency

Olufemi Ololade Olaewe
1

, Peter Awonnatemi Agbedemnab
1, *

,

Mohammed Muniru Iddrisu
2

1
Department of Information Systems and Technology, C. K. Tedam of University of Technology and Applied Science,

Navrongo, Ghana
2
Department of Mathematics, University for Development Studies, Tamale, Ghana

Abstract

The Hoffman’s algorithm to test equivalency of linear codes is one of the techniques that have been used over the years; it is

achieved by a comparison of codewords of the linear codes. However, this comparison technique becomes ineffective in

instances where it is applied to linear codes with larger dimensions as it requires much run time complexity, space and size in

comparing the codewords of each linear code. This paper proposes an optimised algorithm for testing the equivalency of linear

codes, specifically addressing the limitations of the Hoffman method. To assess and compare the efficiencies of the Hoffman

algorithm and the optimised algorithm, a set of nine carefully selected linear codes were subjected to equivalency testing. The

CPU runtime of both algorithms was recorded using the C++ chrono library. The recorded runtime data was then utilized to

create a scatter plot, offering a visual representation of the contrasting trends in CPU runtime between the two algorithms. The

plot clearly indicate exponential growth in CPU runtime for the Hoffman algorithm as the length and dimension of the linear

codes increases, in contrast, the proposed algorithm showcased a minimal growth in CPU runtime, indicating its superior

efficiency and optimised performance.

Keywords

Linear Codes, Code Equivalency, Hoffman Algorithm, Codewords

1. Introduction

Security in communication systems has historically been

obtained through cryptographic means which uses concept of

coding. Recent research has focused in this aspect and has

unveiled ample opportunity for security design [1].

Equivalency of linear code is a major aspect in coding

theorem; over the years, algorithms have been developed to

aid the test for equivalency of linear codes, for instance, the

support splitting algorithm deduces the permutation that ex-

ists between equivalent linear binary codes [2]. Testing for

equivalency of linear codes is equally necessary and is not

catered for by the support splitting algorithm. Code equiva-

lence is a basic concept in coding theory with several appli-

cations in code-based cryptography; the McEliece public-key

cryptosystem, Girault’s Identification scheme and the Cour-

http://www.sciencepg.com/journal/mcs
http://www.sciencepg.com/journal/247/archive/2470902
http://www.sciencepg.com/
https://orcid.org/0009-0003-2402-5827
https://orcid.org/0000-0001-8904-1009
https://orcid.org/0000-0001-7628-8168
https://orcid.org/0009-0003-2402-5827
https://orcid.org/0000-0001-8904-1009
https://orcid.org/0000-0001-7628-8168
https://orcid.org/0009-0003-2402-5827
https://orcid.org/0000-0001-8904-1009
https://orcid.org/0000-0001-7628-8168
https://orcid.org/0009-0003-2402-5827
https://orcid.org/0000-0001-8904-1009
https://orcid.org/0000-0001-7628-8168
https://orcid.org/0009-0003-2402-5827
https://orcid.org/0000-0001-8904-1009
https://orcid.org/0000-0001-7628-8168

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

27

tois-Finiasz-Sendrier (CFS) signature scheme [3], to name a

few. The notion of equivalence of linear codes used in

code-based cryptography usually involves only permutations

as the code alphabet is the binary field. However, this is by far

the case in coding theory where for a more general notion of

equivalence all isometries of the Hamming space have to be

included.

A research work on linear code equivalence as indicated in

[4] dealt with the problem of deciding if two finite dimen-

sional linear subspaces over an arbitrary field are identical up

to a permutation of the coordinates. The researchers showed

that given access to a subroutine that decides if weighted

undirected graphs are isomorphic, one may deterministically

decide the permutation code equivalence, provided that the

underlying vector spaces interest trivially with their orthog-

onal complement with respect to an arbitrary inner product.

The code equivalence problem is to decide whether two

linear codes over F_q are equivalent. Testing for equivalency

of linear codes require comparison of codewords of the linear

codes i.e. scanning the bits of the codewords, [5]. The com-

parison technique which was used by the previous study be-

comes ineffective as the dimension k or length n of the code

increases. The factors which are to be considered in measur-

ing efficiency of algorithm are time complexity, space com-

plexity, administrative cost and faster implementation. One of

the effective methods for studying the efficiency of algorithm

is the Big O-Notation, [6]. The comparison technique be-

comes ineffective in the sense that when it is subjected to a

linear code with large dimension or length, much resources i.e.

run time complexity, space and size are required in comparing

the codewords of each linear code. Moreover, comparing

algorithms with their theoretical time complexity boundaries

can be achieved by analysing the behaviour of the algorithm

implementation in real environment, [7]. This suggests that to

efficiently measure time complexity of an algorithm, it has to

be subjected to real and applicable system or data which for

this paper is linear code and the algorithm being equivalency

test algorithm. Time complexity is known as one of the tasks

of a comprehensive algorithm analysis, the objective of

analysis is to obtain a function which for a given size of the

problem estimates the time needed for the algorithm to exe-

cute successfully [8].

Al-Khwarizmi in his write up “About Indian Counting”

explained algorithms of four arithmetic operations. Compar-

ing Roman and decimal counting systems. He wrote “... we

decided to explain Indian counting with IX letter, which they

use to explain any of their digits for ease and brevity facili-

tating business for any person, who is learning arithmetic”, [9].

The three words used here i.e. easy, brevity and facilitation –

in algorithm can be explained as “complexity”. Several works

have discussed methods for calculating time complexity for

combinational and sequential schemes; some of these also

deduced a formula to calculate the time complexity of

SH-Model of algorithm, [9]. The concept of time complexity

is one that is central to the theory of algorithms. During the

last century it was clarified with the development of the theory

and practice of computing and the appearance of new models

of algorithms. As a result of this clarification, nowadays there

are several options of estimation of complexity of algorithm

objects. Theoretical analysis is often complicated and has

other drawbacks as well. Therefore, empirical analysis of time

complexity is preferred and can be used in measuring effi-

ciency in terms of execution time of an algorithm.

There exists data how to measure efficiency/time com-

plexity of algorithms by running algorithms on problems of

different sizes as demonstrated in [8]. This suggest that time

complexity of algorithm can be measured by executing the

algorithm on different sizes of problem which for this study

are equivalent linear codes. Another work focused on itera-

tions (loops, and recursive calls) from which to build a tree,

[10]. For each node the total number of repetitions which is a

function of input size. The tool does not contain an automatic

calculation of beehive that fit the measurement but is calcu-

lated manually. Yet again, another research recorded how

many times a base block is executed; in most cases, this is a

line of procedure by method clustering then combines the

blocks and finds the linear potential function that fit better,

[11]. The tool at the entrance expects test cases of different

sizes, to be determined by the user. A new form of graph

referred to as complexity plots, where there are complexity

classes on the x-axis and size on the y-axis problems was

introduced in [12]. The approach is interesting because the

values on the x-axis are without units, an estimation is done

but with estimations function that best fit the measurements.

Figure 1. Possible time complexities of algorithms.

One of the straightforward definitions for optimisation is

“doing the most with the least” [13]. Another study by [14]

opined that algorithms with time complexity of O(n2) in most

scenarios and particularly for large datasets take a lot of time

to execute and should be avoided as it needs a lot of resources

thereby deducing equivalency of linear code by comparison of

codewords is inefficient as its time complexity, O(k*n), where

k and n are the dimension and length of the linear codes re-

spectively. Figure 1 illustrates the possible time complexities

of algorithms.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

28

2. Materials and Methods

2.1. Feasibility and Study Phase

The main aim here is to ascertain whether optimizing the

equivalence algorithm in [5] is feasible. After a careful col-

lection of data concerning time of execution of Hoffman’s

equivalency test algorithm, it was clear that the new algorithm

will be both logically and technically feasible. Technically,

the new algorithm can be implemented in C++ (see plus-plus)

which is very comfortable to program with and has accurate

measurement of program execution time.

2.2. C++ as a Program Execution Time

Measurement Tool

C++ is a general-purpose programming language created as

an extension to the C programming language. The use of C++

expanded significantly over time and modern C++ now has

object-oriented, generic and functional feature in addition to

features for low-memory manipulation. The design of C++

was geared system programming and embedded, re-

source-constrained software and large systems, with perfor-

mance, efficiency, and flexibility of use as its design high-

lights [15]. C++ has a library that was introduced in C++ 11,

which is able to find out time taken by different parts of pro-

gram using std:: chrono, hence the main reason for imple-

menting the new algorithm in using C++ [16]. Furthermore,

the std: chrono has two distinct instances which are timepoint

and duration. A timepoint represents a point in time whereas a

duration represents the interval or span of time. The C++

library enables us to subtract two timepoints to get the interval

of time passed in between. The std:: chrono also provides us

with three clocks with varying accuracy. The

high_resolution_clock is the most accurate and hence it is

used to measure execution time.

2.3. Source of Data and Data Analysis

The primary data that is used in this paper constitutes time

complexities of the [5] algorithm as well as that of the estab-

lished algorithm which was recorded on execution of the two

algorithms on different sizes of linear code.

The most efficient algorithm can be said to be one that takes

the least amount of execution and memory usage possible

while yielding accurate result. To measure the runtime of an

algorithm with the aim of determining its efficiency one must

implement the algorithm in an actual programming language

[17]. To ensure accuracy in the Central Processing Unit (CPU)

time recordings, the two algorithms were implemented as a

C++ application as it has CPU runtime measure libraries.

Scatter plot which is an analysis tool provided by MATLAB

and also a visualization tool is used in analysing the data. The

analyses of these data give room to measure efficiency and

accuracy of the two algorithms.

2.4. Scatter Plots

Quantification leads to precision provided by numbers.

Numerical representation of behaviour of quantitative meas-

urement serves as the medium through which all analysis

occurs, [18]. Conducting research on analysis, [18] indicated

that out of 4313 reviewed graphs, 3560 had a quantitative

scaled vertical axis. In other words, 83% of the reviewed

graphs prominently displayed behaviour as a quantity. In

analysis, data is graphed for each participant during a study

with trend, level and stability of data assessed within and

between conditions [19].

A scatter plot is used in visualizing the data collected

graphically as it is commonly used to display change over

time as a series of data points. The scatter plot therefore ena-

bles researchers to determine the relationship between sets of

values with one dataset always being dependent on the other

set. Scatter plots are powerful visual tools that illustrate trends

in data over a period of a particular correlation. Furthermore,

Scatter plots is a useful tool in that it shows data variables and

trends clearly and can enable researchers to make predictions

about the results of data not yet recorded hence its adoption to

compare efficiency of (Hoffman et al., 1991a) algorithm and

the proposed algorithm.

2.5. Linear Code Generation

Two linear codes of the same length can be combined to

develop a third code which will be twice the length in a way

similar to the direct sum of the code’s construction. The di-

mension of the newly formed code can therefore be a

,2𝑛, 𝑘1 + 𝑘2, min(2𝑑1 + 𝑑2)- linear code [20]. Generator

matrix of the newly formed linear code is given as.

(
𝐺1 𝐺1

0 𝐺2
) (1)

The [4,1,4] linear code as used by [20] is adopted as the

primary linear code in the paper.

2.6. Gilbert Varshamov Bound

To determine if the generated linear codes exists, Gilbert

Varshamov bound as implemented by (Hoffman et al., 1991b)

is adopted:

Theorem: There exist a linear code of length n, dimension k

and distance d if

.
𝑛 − 1

0
/ + .

𝑛 − 1
1

/ + ⋯ + .
𝑛 − 1
𝑑 − 2

/ < 2𝑛−𝑘 (2)

Corollary: If 𝑛 1, 𝑑 1 then there exists an (𝑛, 𝑘, 𝑑)

linear code with

|𝑐| ≥
2𝑛−1

.𝑛−1
0 /+.𝑛−1

1
/+⋯+ .𝑛−1

𝑑−2
/
 (3)

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

29

The corollary is a lower bound for the number of words in a

linear code of length 𝑛 and distance 𝑑.

2.7. Hamming Bound

Theorem: Let be a code of length 𝑛 and d 2𝑡 + 1

then the number of words in the code is given as

|𝑐| ≤
2𝑛

(
𝑛
0)+(

𝑛
1)+⋯+(

𝑛
𝑡)

 (3)

The Hamming bound is an upper bound for the number of

words in a linear code of length n and distance 𝑑 2𝑡 + 1.

3. Results and Discussion

3.1. The Proposed Linear Equivalency Test

Algorithm

The proposed algorithm is based on [5] equivalency test

algorithm but it does not compare corresponding words unlike

the case presented in [5]. The aim is to improve efficiency and

accuracy of Linear code equivalent test algorithm. It ignores

the zeros in the codewords and take note of the position of the

ones in the codewords before determining the equivalency.

Not considering the zero codewords further makes the algo-

rithm more efficient as it reduces the number of bits to work

with. However, to test the accuracy of the algorithm, it has

been subjected to codes of 2𝑛 length where 𝑛 2,3,4.

Steps of the proposed algorithm:

Check if the two codes, C and are linear codes by ver-

ifying that the two codes satisfy the properties of a linear code.

Locate the positions of 1’s in the codewords of C and C '.

Find 𝑑 𝑑1 − 𝑑2, where 𝑑1 and 𝑑2 are the positions of

1’s in codewords of C and respectively.

Compute sum of d’s denoted by ∑𝑑

If ∑𝑑 0 then ≅ ' otherwise they are not equiva-

lent.

Examples of linear codes and its equivalence by the algo-

rithm in [5] are presented in tabular form tables 1, 2 and 3.

Table 1. Example of Linear code of length 2 with A and B repre-

senting each bit and its equivalent code derived from pattern 2,1.

A B A B

0 0 0 0

0 1 1 0

1 0 0 1

1 1 1 1

*Original Code | Derived Code.

Table 2. Example of Linear code of length 3 with A, B and C repre-

senting each bit and its equivalent code derived from pattern 2,3,1.

*Original code

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

*Equivalent code with pattern 2,3,1

A B C

0 0 0

0 1 0

1 0 0

1 1 0

0 0 1

0 1 1

1 0 1

1 1 1

Table 3. Example of Linear code of length 4 with A, B, C and D

representing each bit and its equivalent code derived from pattern

1,3,2,4.

*Original code

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

30

A B C D

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

*Equivalent code with pattern 1,3,2,4

A B C D

0 0 0 0

0 0 0 1

0 1 0 0

0 1 0 1

0 0 1 0

0 0 1 1

A B C D

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 1 0 0

1 1 0 1

1 0 1 0

1 0 1 1

1 1 1 0

1 1 1 1

3.2. Illustrative Example (Simulation)

Table 4 illustrates the usage of the proposed algorithm us-

ing linear code in Table 3 when n= 4 i.e. A, B, C and D

Table 4. Simulation of Proposed Algorithm.

Original code

A B C D

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

31

Equivalent code with pattern {1,3,2,4}

A B C D Position of 1’s in C Position of 1’s in C ' Diff. SUM

0 0 0 0 0 0 0 0

0 0 0 1 4 4 0 0

0 1 0 0 3 2 -1 -1

0 1 0 1 3 4 2 4 -1 0 -2

0 0 1 0 2 3 +1 -1

0 0 1 1 2 4 3 4 +1 0 0

0 1 1 0 2 3 2 3 0 0 0

0 1 1 1 2 3 4 2 3 4 0 0 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 4 1 4 0 0 0

1 1 0 0 1 3 1 2 0 -1 -1

1 1 0 1 1 3 4 1 2 4 0 -1 0 -2

1 0 1 0 1 2 1 3 0 1 -1

1 0 1 1 1 2 4 1 3 4 0 1 0 0

1 1 1 0 1 2 3 1 2 3 0 0 0 0

1 1 1 1 1 2 3 4 1 2 3 4 0 0 0 0 0

It is noticed that the algorithm sums up to which indicates

that the two codes are equivalent.

3.3. The Equivalence Test Algorithm by [5]

Input

 *𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛+

 *𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛+

Output: 𝑐 and 𝑐 are equivalent or are not equivalent

Steps

1) Check if and are linear codes

2) Check and verify if its codewords are all permuted

from with same pattern.

3) If step 2 check is true and are equivalent other-

wise not equivalent

4) End program

The linear code equivalence problem in [5] is solved by

comparing the codewords of the linear codes in question.

Executing the algorithm on large length/dimension of linear

codes will result in a situation where more resources will be

required and the cost of implementation will also be high.

Illustrative example of [5] algorithm

 *0000,1011,0101,1110+

 *0000,1110,0101,1011+

By comparing the codewords of and , 1432 ar-

rangement of is constant in hence the two codes are

equivalent.

3.4. Performance Evaluation on Algorithm

Runtime

The runtime of the proposed algorithm was compared to the

existing algorithm by [5], using different length and dimen-

sions of codewords. This comparison is shown in Table 5.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

32

Table 5. Runtime Comparison of the Hoffman Algorithm and the Proposed Algorithm.

Length (n) Dimension (k) Hoffman Algorithm Runtime (μs) Proposed Algorithm Runtime (μs)

8 2 995 541

16 4 1031 548

32 8 1601 550

64 16 1998 557

128 32 15715 4006

256 64 48401 12764

512 128 239097 65436

1024 256 1580359 489754

2048 512 12166397 3510342

Table 5 gives CPU the runtime on executing the Hoffman equivalent test algorithm and the proposed test algorithm on various

lengths and dimensions of linear codes.

The CPU runtime recorded for the Hoffman Equivalent Test algorithm suggests that the time taken to deduce equivalency of

linear code using the algorithm grows exponentially whilst that of the proposed algorithm increases constantly.

Figure 2. Scatter plot showing relationship between the algorithms CPU runtimes against the various length of Linear codes.

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

33

Figure 3. Scatter plot showing relationship between the algorithms CPU runtimes against the dimensions of Linear codes.

Figures 2 and 3 clearly show that with Hoffman equivalent

test algorithm, the CPU runtime increases rapidly as the

Length (n) and dimension (k) of linear codes increase as op-

pose to that of the proposed algorithm hence the proposed

algorithm is therefore more efficient in deducing equivalency

of linear codes.

3.5. Existence of Linear Codes Test

The following ,𝑛, 𝑘, 𝑑- linear codes were used to measure

the efficiency of Hoffman’s algorithm and the proposed al-

gorithm.

,8,2,4-

,16,4,4-

,32,8,4-

,64,16,4-

,128,32,4-

,256,64,4-

,512,128,4-

,1024,256,4-

,2048,512,4-

The chosen linear codes were tested to ascertain if they do

exist using the theorem of Gilbert Varshamov bound as fol-

lows:

𝑛 8, 𝑘 2, 𝑑 4

 .
7
0
/ + .

7
1
/ + .

7
2
/

 1 + 7 + 21

 29

𝐴𝑙𝑠𝑜, 28−2

 26 64

29 < 64 𝑡𝑟𝑢𝑒

Therefore, the linear code [8,2,4] does exists.

𝑛 16, 𝑘 4, 𝑑 4

 .
15
0

/ + .
15
1

/ + .
15
2

/

 1 + 15 + 105

 121

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

34

𝐴𝑙𝑠𝑜, 216−4

212 4096

121 < 409 *𝑡𝑟𝑢𝑒+

Hence the linear code [16,4,4] exists.

𝑛 32, 𝑘 8, 𝑛 4

 .
31
0

/ + .
31
1

/ + .
31
2

/

 1 + 31 + 465

 497

𝐴𝑙𝑠𝑜, 2𝑛−𝑘 232−8

 224

 16,777,216

497 < 16,777,216 *𝑡𝑟𝑢𝑒+

This implies linear code [32,8,4] exists.

𝑛 64, 𝑘 16, 𝑑 4

 .
63
0

/ + .
63
1

/ + .
63
2

/

 1 + 63 + 1953

 2017

𝐴𝑙𝑠𝑜, 264−16

248 281474976710656

2017 < 281474976710656 *true+

This implies that linear code [64, 16, 4] exists

From the existence proof of the first four linear codes using

the Gilbert Varshamov theorem, it can be concluded that

higher dimensions in the format ,2𝑛, 𝑘1 + 𝑘2, min(2𝑑1, 𝑑2)-

will always exist.

4. Conclusions

This paper sought to optimise the Hoffman equivalent test

algorithm and establish an efficient algorithm that can deter-

mine equivalency of linear codes and further use the optimised

algorithm to enhance data access security. After, the generation

of the optimised equivalent test, we then employed the ap-

proach in [20] for generating generator matrices from existing

linear codes with parameter ,𝑛, 𝑘, 𝑑- to generate our linear

codes. Further, the efficiencies of the Hoffman equivalency test

algorithm and that of the proposed algorithm were subjected to

check for equivalency of linear codes with parameters [8,2,4],

[16,4,4], [32,8,4], [64,16,4], [128,32,4], [256,64,4],

[512,128,4], [1024,256,4] and [2048,512,4]; the CPU runtimes

of the two algorithms were measured using the C++ Chrono

library and the results visualised with scatter plots. It was

clearly observed that the CPU runtime of the Hoffman algo-

rithm increases rapidly as the dimension and size of the linear

codes increase whiles the increase in runtime of proposed al-

gorithm is minimal. Thus, the proposed algorithm is a more

efficient route for the equivalency test of linear codes.

Abbreviations

CFS: Courtois-Finiasz-Sendrier

CPU: Central Processing Unit

F_q: Denotes a Finite Field of q Elements

Author Contributions

Olufemi Ololade Olaewe: Conceptualization, Software,

Methodology, Writing – original draft

Peter Awonnatemi Agbedemnab: Supervision, Method-

ology, Writing – original draft

Mohammed Muniru Iddrisu: Supervision, Methodology

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. K. Harrison, J. Almeida, M. R. Bloch, S. W. McLaughlin,

and J. Barros, “Coding for secrecy: An overview of er-

ror-control coding techniques for physical-layer security,”

IEEE Signal Processing Magazine. pp. 41–50, 2013.

https://doi.org/10.1109/MSP.2013.2265141

[2] N. Sendrier, “Finding the permutation between equivalent linear

codes: the support splitting algorithm,” IEEE Trans Inf Theory, pp.

1193–1203, 2000, https://doi.org/10.1109/18.850662

[3] N. T. Courtois, M. Finiasz, and N. Sendrier, “How to Achieve a

McEliece-Based Digital Signature Scheme,” Lecture Notes in

Computer Science (including subseries Lecture Notes in Arti-

ficial Intelligence and Lecture Notes in Bioinformatics), vol.

2248, pp. 157–174, 2001,

https://doi.org/10.1007/3-540-45682-1_10

[4] M. Bardet, A. Otmani, and M. Saeed-Taha, “Permutation Code

Equivalence is Not Harder Than Graph Isomorphism When

Hulls Are Trivial,” IEEE International Symposium on Infor-

mation Theory - Proceedings, vol. 2019-July, pp. 2464–2468,

Jul. 2019, https://doi.org/10.1109/ISIT.2019.8849855

http://www.sciencepg.com/journal/mcs

Mathematics and Computer Science http://www.sciencepg.com/journal/mcs

35

[5] D. G. Hoffman, Wal, D. A. Leonard, C. C. Lidner, K. T. Phelps,

and C. A. Rodger, Coding Theory: The Essentials. USA:

Marcel Dekker, Inc., 1991.

[6] S. Gayathri Devi, K. Selvam, and S. P. Rajagopalan, “An

abstract to calculate big o factors of time and space complexity

of machine code,” in IET Conference Publications, 2011, pp.

844 – 847. https://doi.org/10.1049/cp.2011.0483

[7] T. Dobravec, “Estimating the time complexity of the algo-

rithms by counting the Java bytecode instructions,” in 2017

IEEE 14th International Scientific Conference on Informatics,

INFORMATICS 2017 - Proceedings, 2018, pp. 74–79.

https://doi.org/10.1109/INFORMATICS.2017.8327225

[8] M. Zugelj, “Empirical Analysis Complexity of Algorithm,”

University of Ljubljana, 2019.

[9] M. Cherkaskyy and H. K. Murad, “Modern Problems of Radio

Engineering, Telecommunications and Computer Science,”

Institute of Electrical and Electronics Engineers (IEEE), Jul.

2006, pp. 45–45. https://doi.org/10.1109/tcset.2002.1015835

[10] D. Zaparanuks and M. Hauswirth, “Algorithmic profiling,” in

ACM SIGPLAN Notices, 2012, pp. 67–76.

https://doi.org/10.1145/2345156.2254074

[11] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson, “Measuring

empirical computational complexity,” in 6th Joint Meeting of

the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engi-

neering, ESEC/FSE 2007, 2007, pp. 395–404.

https://doi.org/10.1145/1287624.1287681

[12] J. Thiyagalingam, S. Walton, B. Duffy, A. Trefethen, and M.

Chen, “Complexity plots,” Computer Graphics Forum, pp.

111–120, 2013, https://doi.org/10.1111/cgf.12098

[13] T. R. Kelley, “Optimization, an Important Stage of Engineering

Design,” 2010, Accessed: Oct. 22, 2021. [Online]. Available:

https://digitalcommons.usu.edu/ncete_publications

[14] L. Diego, “Essential Programming | Time Complexity,” To-

wards Data Science. [Online]. Available:

https://towardsdatascience.com/essential-programming-time-c

omplexity-a95bb2608cac

[15] B. Stroustrup, the C++ Programming Language 4Th Edition.

2013.

[16] “Measure execution time of a function in C++ - Geeksfor-

Geeks.” Accessed: Oct. 22, 2021. [Online]. Available:

https://www.geeksforgeeks.org/measure-execution-time-functi

on-cpp/

[17] Khan Academy, “Measuring an algorithm’s efficiency | AP

CSP (article).” Accessed: Oct. 22, 2021. [Online]. Available:

https://www.khanacademy.org/computing/ap-computer-scienc

e-principles/algorithms-101/evaluating-algorithms/a/measurin

g-an-algorithms-efficiency

[18] R. M. Kubina, D. E. Kostewicz, K. M. Brennan, and S. A. King,

“A Critical Review of Line Graphs in Behavior Analytic

Journals,” Educational Psychology Review. pp. 583–598, 2017.

https://doi.org/10.1007/s10648-015-9339-x

[19] J. D. Lane and D. L. Gast, “Visual analysis in single case

experimental design studies: Brief review and guidelines,”

Neuropsychological Rehabilitation. pp. 445–463, 2014.

https://doi.org/10.1080/09602011.2013.815636

[20] A. Ibrahim, P. Chun, and N. Kamoh, “A New [14 8 3]-Linear

Code From the Aunu Generated [7 4 2] -Linear Code and the

Known [7 4 3] Hamming Code Using the (U|U+V) Construc-

tion,” Journal of Applied & Computational Mathematics, vol.

07, no. 01, pp. 1–3, 2018,

https://doi.org/10.4172/2168-9679.1000379

http://www.sciencepg.com/journal/mcs

