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Abstract

The Hoffman’s algorithm to test equivalency of linear codes is one of the techniques that have been used over the years; it is
achieved by a comparison of codewords of the linear codes. However, this comparison technique becomes ineffective in
instances where it is applied to linear codes with larger dimensions as it requires much run time complexity, space and size in
comparing the codewords of each linear code. This paper proposes an optimised algorithm for testing the equivalency of linear
codes, specifically addressing the limitations of the Hoffman method. To assess and compare the efficiencies of the Hoffman
algorithm and the optimised algorithm, a set of nine carefully selected linear codes were subjected to equivalency testing. The
CPU runtime of both algorithms was recorded using the C++ chrono library. The recorded runtime data was then utilized to
create a scatter plot, offering a visual representation of the contrasting trends in CPU runtime between the two algorithms. The
plot clearly indicate exponential growth in CPU runtime for the Hoffman algorithm as the length and dimension of the linear
codes increases, in contrast, the proposed algorithm showcased a minimal growth in CPU runtime, indicating its superior
efficiency and optimised performance.
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1. Introduction

Security in communication systems has historically been
obtained through cryptographic means which uses concept of
coding. Recent research has focused in this aspect and has
unveiled ample opportunity for security design [1].

Equivalency of linear code is a major aspect in coding
theorem; over the years, algorithms have been developed to
aid the test for equivalency of linear codes, for instance, the

support splitting algorithm deduces the permutation that ex-
ists between equivalent linear binary codes [2]. Testing for
equivalency of linear codes is equally necessary and is not
catered for by the support splitting algorithm. Code equiva-
lence is a basic concept in coding theory with several appli-
cations in code-based cryptography; the McEliece public-key
cryptosystem, Girault’s Identification scheme and the Cour-
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tois-Finiasz-Sendrier (CFS) signature scheme [3], to name a
few. The notion of equivalence of linear codes used in
code-based cryptography usually involves only permutations
as the code alphabet is the binary field. However, this is by far
the case in coding theory where for a more general notion of
equivalence all isometries of the Hamming space have to be
included.

A research work on linear code equivalence as indicated in
[4] dealt with the problem of deciding if two finite dimen-
sional linear subspaces over an arbitrary field are identical up
to a permutation of the coordinates. The researchers showed
that given access to a subroutine that decides if weighted
undirected graphs are isomorphic, one may deterministically
decide the permutation code equivalence, provided that the
underlying vector spaces interest trivially with their orthog-
onal complement with respect to an arbitrary inner product.

The code equivalence problem is to decide whether two
linear codes over F_q are equivalent. Testing for equivalency
of linear codes require comparison of codewords of the linear
codes i.e. scanning the bits of the codewords, [5]. The com-
parison technique which was used by the previous study be-
comes ineffective as the dimension k or length n of the code
increases. The factors which are to be considered in measur-
ing efficiency of algorithm are time complexity, space com-
plexity, administrative cost and faster implementation. One of
the effective methods for studying the efficiency of algorithm
is the Big O-Notation, [6]. The comparison technique be-
comes ineffective in the sense that when it is subjected to a

linear code with large dimension or length, much resources i.e.

run time complexity, space and size are required in comparing
the codewords of each linear code. Moreover, comparing
algorithms with their theoretical time complexity boundaries
can be achieved by analysing the behaviour of the algorithm
implementation in real environment, [7]. This suggests that to
efficiently measure time complexity of an algorithm, it has to
be subjected to real and applicable system or data which for
this paper is linear code and the algorithm being equivalency
test algorithm. Time complexity is known as one of the tasks
of a comprehensive algorithm analysis, the objective of
analysis is to obtain a function which for a given size of the
problem estimates the time needed for the algorithm to exe-
cute successfully [8].

Al-Khwarizmi in his write up “About Indian Counting”
explained algorithms of four arithmetic operations. Compar-
ing Roman and decimal counting systems. He wrote “... we
decided to explain Indian counting with IX letter, which they
use to explain any of their digits for ease and brevity facili-

tating business for any person, who is learning arithmetic”, [9].

The three words used here i.e. easy, brevity and facilitation —
in algorithm can be explained as “complexity”. Several works
have discussed methods for calculating time complexity for
combinational and sequential schemes; some of these also
deduced a formula to calculate the time complexity of
SH-Model of algorithm, [9]. The concept of time complexity
is one that is central to the theory of algorithms. During the
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last century it was clarified with the development of the theory
and practice of computing and the appearance of new models
of algorithms. As a result of this clarification, nowadays there
are several options of estimation of complexity of algorithm
objects. Theoretical analysis is often complicated and has
other drawbacks as well. Therefore, empirical analysis of time
complexity is preferred and can be used in measuring effi-
ciency in terms of execution time of an algorithm.

There exists data how to measure efficiency/time com-
plexity of algorithms by running algorithms on problems of
different sizes as demonstrated in [8]. This suggest that time
complexity of algorithm can be measured by executing the
algorithm on different sizes of problem which for this study
are equivalent linear codes. Another work focused on itera-
tions (loops, and recursive calls) from which to build a tree,
[10]. For each node the total number of repetitions which is a
function of input size. The tool does not contain an automatic
calculation of beehive that fit the measurement but is calcu-
lated manually. Yet again, another research recorded how
many times a base block is executed; in most cases, this is a
line of procedure by method clustering then combines the
blocks and finds the linear potential function that fit better,
[11]. The tool at the entrance expects test cases of different
sizes, to be determined by the user. A new form of graph
referred to as complexity plots, where there are complexity
classes on the x-axis and size on the y-axis problems was
introduced in [12]. The approach is interesting because the
values on the x-axis are without units, an estimation is done
but with estimations function that best fit the measurements.

n{2IIJ

Number of Operations

0(1)

Input Data Size

Figure 1. Possible time complexities of algorithms.

One of the straightforward definitions for optimisation is
“doing the most with the least” [13]. Another study by [14]
opined that algorithms with time complexity of O(n2) in most
scenarios and particularly for large datasets take a lot of time
to execute and should be avoided as it needs a lot of resources
thereby deducing equivalency of linear code by comparison of
codewords is inefficient as its time complexity, O(k*n), where
k and n are the dimension and length of the linear codes re-
spectively. Figure 1 illustrates the possible time complexities
of algorithms.
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2. Materials and Methods

2.1. Feasibility and Study Phase

The main aim here is to ascertain whether optimizing the
equivalence algorithm in [5] is feasible. After a careful col-
lection of data concerning time of execution of Hoffman’s
equivalency test algorithm, it was clear that the new algorithm
will be both logically and technically feasible. Technically,
the new algorithm can be implemented in C++ (see plus-plus)
which is very comfortable to program with and has accurate
measurement of program execution time.

2.2. C++ as a Program Execution Time
Measurement Tool

C++ is a general-purpose programming language created as
an extension to the C programming language. The use of C++
expanded significantly over time and modern C++ now has
object-oriented, generic and functional feature in addition to
features for low-memory manipulation. The design of C++
was geared system programming and embedded, re-
source-constrained software and large systems, with perfor-
mance, efficiency, and flexibility of use as its design high-
lights [15]. C++ has a library that was introduced in C++ 11,
which is able to find out time taken by different parts of pro-
gram using std:: chrono, hence the main reason for imple-
menting the new algorithm in using C++ [16]. Furthermore,
the std: chrono has two distinct instances which are timepoint
and duration. A timepoint represents a point in time whereas a
duration represents the interval or span of time. The C++
library enables us to subtract two timepoints to get the interval
of time passed in between. The std:: chrono also provides us
with  three clocks with varying accuracy. The
high_resolution_clock is the most accurate and hence it is
used to measure execution time.

2.3. Source of Data and Data Analysis

The primary data that is used in this paper constitutes time
complexities of the [5] algorithm as well as that of the estab-
lished algorithm which was recorded on execution of the two
algorithms on different sizes of linear code.

The most efficient algorithm can be said to be one that takes
the least amount of execution and memory usage possible
while yielding accurate result. To measure the runtime of an
algorithm with the aim of determining its efficiency one must
implement the algorithm in an actual programming language
[17]. To ensure accuracy in the Central Processing Unit (CPU)
time recordings, the two algorithms were implemented as a
C++ application as it has CPU runtime measure libraries.
Scatter plot which is an analysis tool provided by MATLAB
and also a visualization tool is used in analysing the data. The
analyses of these data give room to measure efficiency and
accuracy of the two algorithms.
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2.4. Scatter Plots

Quantification leads to precision provided by numbers.
Numerical representation of behaviour of quantitative meas-
urement serves as the medium through which all analysis
occurs, [18]. Conducting research on analysis, [18] indicated
that out of 4313 reviewed graphs, 3560 had a quantitative
scaled vertical axis. In other words, 83% of the reviewed
graphs prominently displayed behaviour as a quantity. In
analysis, data is graphed for each participant during a study
with trend, level and stability of data assessed within and
between conditions [19].

A scatter plot is used in visualizing the data collected
graphically as it is commonly used to display change over
time as a series of data points. The scatter plot therefore ena-
bles researchers to determine the relationship between sets of
values with one dataset always being dependent on the other
set. Scatter plots are powerful visual tools that illustrate trends
in data over a period of a particular correlation. Furthermore,
Scatter plots is a useful tool in that it shows data variables and
trends clearly and can enable researchers to make predictions
about the results of data not yet recorded hence its adoption to
compare efficiency of (Hoffman et al., 1991a) algorithm and
the proposed algorithm.

2.5. Linear Code Generation

Two linear codes of the same length can be combined to
develop a third code which will be twice the length in a way
similar to the direct sum of the code’s construction. The di-
mension of the newly formed code can therefore be a
[2n, k; + k,, min(2d; + d,)] linear code [20]. Generator
matrix of the newly formed linear code is given as.

(¢ )
0 G,

The [4,1,4] linear code as used by [20] is adopted as the
primary linear code in the paper.

)]

2.6. Gilbert VVarshamov Bound

To determine if the generated linear codes exists, Gilbert
Varshamov bound as implemented by (Hoffman et al., 1991b)
is adopted:

Theorem: There exist a linear code of length n, dimension k
and distance d if

(n_1)+(n_1)+---+ (n—1)<2n_k

0 1 d—2 @

Corollary: If n # 1,d # 1 then there exists an (n,k,d)
linear code with

2n—1

R )

®
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The corollary is a lower bound for the number of words in a
linear code of length n and distance d.

2.7. Hamming Bound

Theorem: Let C be a code of length n and d=2t+ 1
then the number of words in the code is given as

2n
<
1€l = Ty ®
The Hamming bound is an upper bound for the number of
words in a linear code of length n and distance d = 2t + 1.

3. Results and Discussion

3.1. The Proposed Linear Equivalency Test
Algorithm

The proposed algorithm is based on [5] equivalency test
algorithm but it does not compare corresponding words unlike
the case presented in [5]. The aim is to improve efficiency and
accuracy of Linear code equivalent test algorithm. It ignores
the zeros in the codewords and take note of the position of the
ones in the codewords before determining the equivalency.
Not considering the zero codewords further makes the algo-
rithm more efficient as it reduces the number of bits to work
with. However, to test the accuracy of the algorithm, it has
been subjected to codes of 2™ length where n = 2,3,4.

Steps of the proposed algorithm:

Check if the two codes, C and C' are linear codes by ver-
ifying that the two codes satisfy the properties of a linear code.
Locate the positions of 1’s in the codewords of C and C .

Find d = d, — d,, where d; and d, are the positions of
1’s in codewords of C and C' respectively.

Compute sum of d’s denoted by Y, d

If ¥d =0 then C = C" otherwise they are not equiva-
lent.

Examples of linear codes and its equivalence by the algo-
rithm in [5] are presented in tabular form tables 1, 2 and 3.

Table 1. Example of Linear code of length 2 with A and B repre-
senting each bit and its equivalent code derived from pattern 2,1.

A B A B
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

“Original Code | Derived Code.

Table 2. Example of Linear code of length 3 with A, B and C repre-
senting each bit and its equivalent code derived from pattern 2,3,1.

*Qriginal code

A

w
(@]

P = Pk P, O O O o
O O +» +» O o
O + O +» O +» O

*Equivalent code with pattern 2,3,1

A B

(@)

- O O +» +» O o
b O B O BB O +» O
P O O O O

Table 3. Example of Linear code of length 4 with A, B, C and D
representing each bit and its equivalent code derived from pattern
1,3,2,4.

*Qriginal code

A B C D
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
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A B C D A B C D
1 0 1 0 0 1 1 0
1 0 1 1 0 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 0 1 1 0 0
1 1 1 1 1 1 0 1
1 0 1 0
*Equivalent code with pattern 1,3,2,4
1 0 1 1
A B C D 1 1 1 0
0 0 0 0 1 1 1 1
0 0 0 1
0 1 0 0 3.2. lllustrative Example (Simulation)
0 1 0 1 Table 4 illustrates the usage of the proposed algorithm us-
0 0 1 0 ing linear code in Table 3whenn=4i.e. A,B,Cand D
0 0 1 1

Table 4. Simulation of Proposed Algorithm.

Original code
A B C D
0 0 0 0
0 0] 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
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Equivalent code with pattern {1,3,2,4}

A B C D

34

24
23
234

14
13
134
12
124
123
1234

P P P P P P P P O O O ©O ©O O O o

P O ©O P P O O B P O O P L O O

~ P P P O O O O P P P, p O O O o

O P O P O P O P O kP O P O Fr o
-

It is noticed that the algorithm sums up to which indicates
that the two codes are equivalent.

3.3. The Equivalence Test Algorithm by [5]

Input

C = {xl,xZ,X3, ...,xn}

C'={y1Y2 Y3 - Yn}

Output: ¢ and ¢’ are equivalent or are not equivalent

Steps

1) Check if € and C’' are linear codes

2) Check C' and verify if its codewords are all permuted
from C with same pattern.

3) If step 2 check is true C and C' are equivalent other-
wise not equivalent

4) End program

The linear code equivalence problem in [5] is solved by

comparing the codewords of the linear codes in question.

Position of 1’s in C

31

Position of 1’s in C ' Diff. SUM
0 0 0
4 0 0
2 -1 -1
24 -10 -2
3 +1 -1
34 +10 0
23 00 0
234 000 0
1 0 0
14 00 0
12 0-1 -1
124 0-10 -2
13 01 -1
134 010 0
123 000 0
1234 0000 0

Executing the algorithm on large length/dimension of linear

codes will result in a situation where more resources will be

required and the cost of implementation will also be high.
Illustrative example of [5] algorithm

¢ = {0000,1011,0101,1110}
¢’ ={0000,1110,0101,1011}

By comparing the codewords of C and C’, 1432 ar-
rangement of C is constant in C' hence the two codes are
equivalent.

3.4. Performance Evaluation on Algorithm
Runtime

The runtime of the proposed algorithm was compared to the
existing algorithm by [5], using different length and dimen-
sions of codewords. This comparison is shown in Table 5.
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Table 5. Runtime Comparison of the Hoffman Algorithm and the Proposed Algorithm.

Length (n) Dimension (k) Hoffman Algorithm Runtime (us) Proposed Algorithm Runtime (ps)
8 2 995 541

16 4 1031 548

32 8 1601 550

64 16 1998 557

128 32 15715 4006

256 64 48401 12764

512 128 239097 65436

1024 256 1580359 489754

2048 512 12166397 3510342

Table 5 gives CPU the runtime on executing the Hoffman equivalent test algorithm and the proposed test algorithm on various
lengths and dimensions of linear codes.

The CPU runtime recorded for the Hoffman Equivalent Test algorithm suggests that the time taken to deduce equivalency of
linear code using the algorithm grows exponentially whilst that of the proposed algorithm increases constantly.

X 10"
4~
O Hofien Equivalent Algorthm |
¢ Proposed Equavalent Algorithrn |

12 0

]O -
g ol
@
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@
=T
a 6p
(&)
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lEss—s s g l 1 I J
: _y 1000 1500 2000 500

Figure 2. Scatter plot showing relationship between the algorithms CPU runtimes against the various length of Linear codes.
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Figure 3. Scatter plot showing relationship between the algorithms CPU runtimes against the dimensions of Linear codes.

Figures 2 and 3 clearly show that with Hoffman equivalent
test algorithm, the CPU runtime increases rapidly as the
Length (n) and dimension (K) of linear codes increase as op-
pose to that of the proposed algorithm hence the proposed
algorithm is therefore more efficient in deducing equivalency
of linear codes.

3.5. Existence of Linear Codes Test

The following [n, k, d] linear codes were used to measure
the efficiency of Hoffman’s algorithm and the proposed al-
gorithm.

[8,2,4]
[16,4,4]
[32,8,4]
[64,16,4]
[128,32,4]
[256,64,4]
[512,128,4]
[1024,256,4]

[2048,512,4]

The chosen linear codes were tested to ascertain if they do
exist using the theorem of Gilbert VVarshamov bound as fol-

lows:

=(o)+(D+()
=1+7+21
=29
Also, 2872
=26 = 64
29 < 64 true
Therefore, the linear code [8,2,4] does exists.
n=16k=4,d =4
_ (105) N (115) N (125)
=1+15+105

=121
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Also, 216~*
212 = 4096
121 < 409 {true}
Hence the linear code [16,4,4] exists.
n=32k=8 n=4
- (301) + (311) + (321)
=1431+4465
= 497
Also, 2"k = 2328
= D24
= 16,777,216
497 < 16,777,216 {true}
This implies linear code [32,8,4] exists.
n=64,k=16,d = 4
_ (603) N (613) N (623)
=1+463+ 1953
= 2017
Also, 264716
248 = 281474976710656
2017 < 281474976710656 {true}
This implies that linear code [64, 16, 4] exists
From the existence proof of the first four linear codes using
the Gilbert Varshamov theorem, it can be concluded that

higher dimensions in the format [2n, k; + k,, min(2d,, d,)]
will always exist.

4. Conclusions

This paper sought to optimise the Hoffman equivalent test
algorithm and establish an efficient algorithm that can deter-
mine equivalency of linear codes and further use the optimised
algorithm to enhance data access security. After, the generation
of the optimised equivalent test, we then employed the ap-
proach in [20] for generating generator matrices from existing

linear codes with parameter [n, k,d] to generate our linear
codes. Further, the efficiencies of the Hoffman equivalency test
algorithm and that of the proposed algorithm were subjected to
check for equivalency of linear codes with parameters [8,2,4],
[16,44], [32,84], [64,164], [128,32,4], [256,64,4],
[512,128,4], [1024,256,4] and [2048,512,4]; the CPU runtimes
of the two algorithms were measured using the C++ Chrono
library and the results visualised with scatter plots. It was
clearly observed that the CPU runtime of the Hoffman algo-
rithm increases rapidly as the dimension and size of the linear
codes increase whiles the increase in runtime of proposed al-
gorithm is minimal. Thus, the proposed algorithm is a more
efficient route for the equivalency test of linear codes.

Abbreviations

CFS: Courtois-Finiasz-Sendrier
CPU: Central Processing Unit
F_q: Denotes a Finite Field of g Elements
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