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Abstract: The Cartesian word or “Cartesianity” was born with the philosophy of Descart (1596 - 1650). He was at the 

base of a doctrine based on rationalism, that it is means the search for truth by reason. Among others, Sigmend Freud had 

also approached this notion of psychological point to study the enigma of thoughts in humans. Other aspects of the 

Cartesian word have been used in mathematical geometry, namely cartesian coordinates and Cartesian referentials. As 

you know, studying a shape with curved and enclosed borders is more complicated than working on shapes with linear 

borders without curvature. In the way, we will introduce to the Cartesian geometry and characterize he Cartesian shapes. 
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1. Introduction 

The main of this paper is to give the theoretical 

foundations and later in future papers, we will give the 

mathematical and numerical techniques to “Cartesianize” a 

complex form. Among the various aspects of mathematics 

that have contributed to functional analysis, we must 

underline, the convex analysis, a branch that has had fertile 

tracks in analytical and even geometric forms. It will be 

shown that convex analysis and Cartesian analysis coincide 

in particular cases but generally they are different. We have 

to denote that this geometry will be a generalization of the 

polyhedron and polytopes in affine spaces [5-15]. The regular 

polytopes and polyhedron are convex sets but Cartesian sets 

are the union not necessary convex of many polytopes [16-

18] (See Figure 3 below). After defining and after 

characterizing this new notion, you will realize how this track 

would open interesting doors in the field of the applications 

of mathematics for the benefit of applied sciences, like 

medicine, physics, engineering, economics and even 

sociology. We will give an original definition of a Cartesian 

set in a topological space that could be R, R
2
, R

n
 or of infinite 

dimension, as well as some characterizations. 

It is always difficult to study a phenomenon within an 

enclosed region or region with an obliquely indented contour, 

which is due to the problems of irregularities in its boundary. 

To do this, the main objective of this theory is to find a subset 

very close which approximate the region with a contour 

formed of the linear parts as segments (in R
2
), or hyperplans 

in R
n
. This is to have a similar profile of the complex region 

in which the phenomenon would be easier to control and 

study. (See Figure 1) 

 

Figure 1. Complex region in the left and its Cartesian profile in the 

right. 

2. Definitions and Preliminaries 

Let E be a Banach space, E
j
 its dual, and <. , .> the dual 

product. 

H is called an hyperplan in E if and only if, there exists a 

linear form x
j 

belonging to the dual E
j
 such that: H = {y ∈ 

E, <x
j
, y >= α, α ∈ R}. 

1). D={y ∈ E, <xj, y > ≤ α} 

2). D={y ∈ E, <xj, y > ≥ α} 

er and upper half spaces defined by x
j
. 

A set C in E is said to be con. 
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2.1. Remark 

It is easy to prove that H, D are closed convex sets in E. 

2.2. Definition 

C is said to be a regular Cartesian set of E if and only if, C 

is the intersection of a finite family of Di, with Di are half-

spaces of E. (See Figure 2). 

C = ∩(Di) 

 

Figure 2. Regular Cartesian Sets. 

2.3. Example 

A square is a regular Cartesian set defined by the 

intersection of four half spaces. 

[0, 1] x [0, 1] in the intersection of the following four half-

spaces: 

The half space below the line y = 1, the half space above y 

= 0, the half space to the left of the vertical axis x = 1 and the 

half space to the right of the vertical axis x = 0. 

A triangle is a regular Cartesian set defined by the 

intersection of three half- spaces. (See Figure 2) 

Now, we have all the necessary assets to pronounce the 

first definition of a Cartesian set. 

In fact it would be a concatenation of regular Cartesian 

sets. 

2.4. Definition 

Let C be a set of E. We say that C is Cartesian if and only 

if C is a finite union of regular Cartesian sets connected to 

each other. (See Figure3) 

C = ∪∩(Di,j) 

 

Figure 3. Cartesian sets as a finite union of regular cartesian sets. 

2.5. Example 

As illustrated in the Figure3 above, we note that set C is an 

union of regular Cartesian sets as it has been illustrated and 

defined above. 

We could proceed geometrically by inverse process. That 

is to say, consider the Cartesian set C and subdivide it to find 

the regular Cartesians subsets. (See Figure 4) 

 

Figure 4. A cartesian set in the left subdivided in two regular Cartesian 

sets in the right. 

We can extend this notion of regular Cartesian sets on R
n
 

which are represented in the form of polyhedra [5-7] sets that 

have already been treated before in the context of convex 

analysis. Thus, Particularly if one would like to have an idea 

about the Cartesian set in R
n
, it would be according to our 

definition the finite union of polyhedra. (See Figure 5). 

 

Figure 5. Example of Cartesian sets in Rn. 

2.6. Remark 

As you will remark, the notion of the boundary or contour 

will be the main topological property in this work because it 

will be the key characterization of a Cartesian set. As it was 

signaled above, intuitively a Cartesian set is a set whose 

contour is formed of lineal parts. 

Thus we define below the boundary. 

We will note cl(C) respectively int(C) the closure 

respectively the interior of C. 

2.7. Definition 

The topological boundary of a set C is its closure private 

of its interior. 

Fr(C) = cl(C) \ int(C) 

3. Topological Characterizations 

Before, we have to recall and prove some topological 

properties. 
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3.1. Proposition 

The interior of a finite intersection of sets Di is the same of 

the finite intersection of its interior, and the finite union of 

interiors of Di is included in the interior of its unions. 

int(∩Di) = ∩(intDi) 

∪(intDi) ⊂ int(∪Di) 

3.2. Proof 

Suppose that x is in the interior of ∩Di then there exists a r>0 

such that the B(x, r) is included in each Di, wich it is means that x 

is in intDi for each i, then x is in ∩(intDi). In the other hand if x is 

in ∩(intDi), then x is in intDi for each i. There exists ri>0 such that 

B(x,ri) is included in Di. We choose r = min(ri), the B(x, r) is 

included in ∩Di. So, x is in int(∩Di). Finaly. 

int(∩Di) = ∩(intDi) 

For the second inclusion. Let x in∪(intDi), then there 

exists j such that, x in intDj, then there exists r >0 such that 

the B(x, r) is included in Dj. Thus, B(x, r) is included in 

∪(Di) Hence, x is in int(∪Di). Therefore. 

∪(intDi) ⊂ int(∪Di) 

3.3. Proposition 

The boundary of a finite union of sets is included in the 

finite union of its boundaries, 

Fr(∪Di) ⊂ ∪Fr(Di) 

The equality is not always true. 

3.4. Proof 

Let x in Fr(∪Di). According to the definition above, 

Fr(C) = cl(C)\int(C), x is in cl(∪Di)\int(∪Di). Di are 

closed then x is in ∪(Di), but x is not in int(∪Di). Using 

the proposition3.3 above, So There exists j such that x is not 

in intDj and x is in cl(Dj). Then, there exists j such that x is 

in Fr(Dj). That is, x is in ∪ Fr(Di). 

Consequently, 

Fr(∪Di) ⊂ ∪Fr(Di) 

The reverse inclusion is not true because. Let D1=[0, 4], 

D2=[3, 5]. Fr(D1)={0, 4}, Fr(D2) ={3, 5} So, Fr(D1)

∪Fr(D2) = {0, 3, 4, 5}. But Fr(D1∪D2) = {0, 5} 

According to the definition of the regular Cartesian set, it 

would be easy to characterize the boundary of such set, 

knowing that it is trivial to see that these sets are closed for 

the topology defined by the norm. The lemma below is to 

show that the boundary of a regular Cartesian set is not round 

nowhere see example a polyhedron in R
n
. 

3.5. Lemma 

A regular Cartesian set is always Cartesian. 

3.6. Proof 

The proof is trivial according to the definitions. 

3.7. Lemma 

Let E be a Banach space. The finite intersection and the 

finite union of Cartesian sets are Cartesians. 

3.8. Proof 

Let Ck a finite family of Cartesians sets in E, then for each 

k, Ck =∪(∩Di,j,k)), then, 

∪k(Ck) = ∪k(∪i(∩jDi,j,k)) = ∪k(∩i,jDi,j,k) 

So ∪(Ck) is also Cartesians. 

In the same, ∩(Ck) = ∩(∪(∩Di,j,k)) = ∪(∩Di,j,k) which 

is Cartesian. 

4. Main Results and Theorems. 

Now we will begin to give characterizations linking the 

other notions of convex analysis and the functional analysis 

in general knowing that there would be a multitude of future 

results and digging in this track for Cartesian sets. The 

usefulness of the results below is to demonstrate that the 

Cartesianity” and the Convexity are two completely different 

notions which give the utility of this field (Cartesian 

analysis). 

4.1. Proposition 

A regular Cartesian set is always closed convex but the 

reverse is not always true. 

4.2. Proof 

Let C a regular Cartesian subset in E, it is clear that C is 

closed because C is an intersection of a finite closed sets Di. 

Now we have to demonstrate that C is convex. 

Let x, y ∈ C it suffice to prove that [x, y] is included in C. 

Let α ∈ [0, 1] , we will prove that, 

α.x + (1 − α).y ∈ C. 

x ∈ C then x ∈ Di for each i. Then for each i, <x
j
i, x > ≤ 

αi with x
j
i ∈ E

j
 

the dual of E and αi ∈ R. 

In the same y ∈ C then for each i, <x
j
i, y > ≤ αi. We can 

deduce that, 

<x
j
, α.x + (1 − α).y > ≤ αi. 

Hence C is convex. 

The reverse is not true; we consider the circle C((0, 0), 1) 

in R
2
. The C((0, 0), 1) is convex. Suppose that C = ∩(Di). In 

R
2
, each half space can have an equation like ax + by ≤ α. 

We will verify that (0, 0) ∈ Di for each i. 

We have (0, 1) and (−1, 0) in C((0, 0), 1) then (0, 1) and 

(−1, 0) in Di for each i, which implies that a ≤ αi and −a ≤ 

αi, therefore, αi ≥ 0. Hence 
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a.0 + b.0 ≤ αi 

then (0, 0) is in Di for each i, which means that (0, 0) ∈ C 

absurd. 

4.3. Theorem 

Let C to be Cartesian, then, The boundary of C is included 

in the union of the Hyperplans defining the Di,j. Precisely, it 

is formed of linear parts. 

F r(C) ⊂ ∪(Hi,j) ∩ C 

4.4. Proof. 

C is Cartesian, then there exists a finite family Di,j such 

that C=∪∩(Di,j). 

As proved above (see Proposition3.3). 

Fr(C) = Fr(∪(∩Di,j)) ⊂ ∪Fr(∩Di,j). 

So it suffice to prove that ∪Fr(∩Di,j) ⊂ ∪(Hi,j) ∩ C. 

Let x ∈ Fr(C). Then, x ∈ ∪Fr(∩Di,j) Then, there exists 

j0 such that, 

x∈ Fr(∩Di,j0). 

Then x ∈ cl(∩Di,j0) \ int(∩Di,j0). Then for each i, x ∈ 

(∩Di,j0) and x is not in int(∩Di,j0). According to the 

proposition3.1, see above int(∩Di) = ∩( intDi), we deduce 

that there exists i0 such that x is not in int(Di0,j0). 

x∈ Di0,j0 means that there exists x
j
i0,j0∈ E

j 
and αi0,j0 

such that 

<x
j
i0,j0, x> ≤ αi0,j0. 

x is not in int(Di0,j0) means that 

<x
j
i0,j0,x> ≥ αi0,j0 

Hence x ∈ Hi0,j0, then x ∈ ∪(Hi,j). 

Since Fr(C) ⊂ C (C is closed), we conclude that, 

Fr(C) ⊂ ∪(Hi,j) ∩ C. 

The equality is not always true. We construct below an 

example of a Cartesian set such that. the inclusion in the 

other hand is not true Let C = C1UC2. As you will remark in 

the Figure 6 below, when the regular Cartesian set 

constituting the Cartesian sets are connected in more than 

one point, the inclusion is not true. 

 

Figure 6. ∪(Hi,j)∩C in the left and Fr(C) in the right. 

The next theorem resume all the contains of this first 

paper. The main is to characterize the Cartesian topology 

with the boundaries. Thus all the work and control of 

Cartesian region or territories will be studied only in its 

boundaries. 

The demonstration of the theorem below will be treated 

in the next paper (To appear). 

4.5. Theorem 

A set C is Cartesian in a Banach space E if and only if, 

its boundary is an union of linear parts which is means 

that its boundary does not have any round part. 

4.6. Remark 

We have to recall that an applied research axis about 

Cartesian analysis will be studied using all the theoretical 

results proved above. A numerical methods will be used in 

order to “cartesianize” a complex set or region in R
3
with a 

round boundary. Many papers will be published in order to 

show the applications of this axis ’Cartesian Analysis’. In 

the next works about Cartesian analysis, and following the 

current introductions, we will treat researches of 

topological aspects. We will define Cartesian topology and 

the Cartesian spaces (These spaces will be called 

Saidou’spaces). After that, we will start many studies 

about the Cartesian functions. We will define the 

Cartesian functions and its epigraphs. It will be an 

interesting work because we will find a link between 

convex functions and Cartesians functions, that it will be 

an interesting way for optimization. 

5. Conclusion 

In this first work, we introduced to a new mathematics 

foundations for a new more generalized theory that will be 

called “Cartesian Analysis”. At first, it is a question of 

defining and characterizing a Cartesian form in a topological 

space with an infinite dimension. At the end of these 

definitions, we discussed the geometric and some topological 

properties of such forms that are easier to use than any 

complex forms. To say easier to use is to say simpler to study 

and to control. It is not easy to find the maximal Cartesian 

profile of a complex form but we would approximate it by 

these Cartesian forms and minimizing the error. 
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Polytechnique 49 (1881) 47–172. 

[3] H. S. M. Coxeter, Regular Polytopes, Dover, 1973. 



 Mathematics and Computer Science 2019; 4(4): 84-88 88 

 

[4] H. S. M. Coxeter, M. S. Longuet-Higgins et J. C. P. Miller, 
Uniform poly- hedra, Philos. Trans. R. Soc. Lond. Ser. 
A246 (1953) 401–449. 

[5] J. Crovisier, Albert Badoureau, mathématicien oublié, 
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