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Abstract: In the field of investment, depending on their structures and in order to make the best decisions that are optimal,
some companies are subject to some restrictions on their assets. And generally speaking, these constraints concern assets evolving
in uncertainty. This paper focuses on studying a financial continuous-time Merton optimal investment problem in the case where
there is a reallocation constraint with regard to the risky asset. Under this constraint, a certain rate is fixed such that the stock asset
cannot be liquidated sooner than the rate. It is a stochastic control pure investment case for a large investor who faces a discounted
infinite time horizon with utility function of only wealth, subject to a risk aversion coefficient. Our main goal is to characterise
an optimal trading strategy for investors expecting high returns for low risks. We propose the dynamic programming method
whose value function satisfies a nonlinear partial differential equation. Under homotheticity of the value function, a reduction
of dimension is used in order to reduce the original two spatial dimensions problem to one dimension in a bounded domain.
Numerical approximations are used to study the dynamic programming by finite difference discretisation and the convergence
between the finite and the infinite time horizon problem is presented.

Keywords: Merton Problem, Stochastic Optimal Control, Dynamic Programming, Reallocation Constraint

parameters of the problem .

After Merton introduced the problem, research has
continued and several extensions have been brought to
generalise the problem. Proportional transaction costs have

1. Introduction

The original Merton problem known as the Merton’s
portfolio problem has been one of the pioneers in continuous-

time finance. The problem has been introduced to solve the
question of wealth strategy allocation. It concerns the case
where the investor total portfolio is composed of two assets,
one with a constant known rate of return called the risk-free
asset (e.g. a bank account) and one with an unknown rate
of return called the risky asset (e.g. a stock). According to
the uncertainty on the risky asset, the investor wants to know
what is the optimal proportion of her wealth to invest in each
of the assets in order to maximise her total terminal utility
which is on the constant relative risk aversion (CRRA) form.
In his celebrated paper [1] , Merton showed that in the case of
an investment concerning only the wealth held without taking
into account any costs related to the investment, a strategy
for an optimal allocation is to keep a fixed proportion of the
total wealth in both assets and to consume at a constant rate
relative to wealth. This proportion is expressed in terms of the

been introduced in the work of Magill and Constantinides, and
the results show the existence of a non-trading region between
the buying and the selling boundaries [2]. Jiang, Li, and Yi
[3] studied the case of a single risky asset with proportional
transaction costs holds by an investor who faces finite time
horizon. It has been showed that the optimal buying boundary
is not always monotone when consumption is implied. Dai
and Zhong in [4] used a Penalty method for continuous-time
portfolio selection with transaction costs in the case of multiple
risky assets held and showed that it is never optimal to buy
any risky asset when the time is close to the time maturity.
Arun worked on Merton’s problem with a drawdown constraint
on the consumption process [5]. Under this constraint the
consumption level must be kept above a fixed proportion of
the running maximum of the past value consumption. If
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the investor’s wealth ratio to the maximum past consumption
has low values, consumption is bounded to the minimal level
possible without going out from the drawdown constraint. But
as the value increases, consumption increases with the wealth.
Optimally, consume at the higher possible level while waiting
for the ratio value to attain a critical level, after which the
consumption level is augmenting to a new maximum.

Many other works have been studied bringing new
formulations to Merton’s model. A particular case of the
optimal investment problem is the one with constraint on the
risky asset. In this paper, we study the case where the Merton
problem is subject to a reallocation constraint on the risky
asset. This constraint gives an upper bound with a parameter
K on the proportion of the risky asset to transfer to the risk-
free asset. For any time ¢, it is not allowed to liquidate the
stock Y'(t) at a rate u(t) greater than K'Y (¢). A real situation
that motivates such a constraint is that sometimes for investors
who allocate money to different risky assets, there are some
initial constraint agreements such that the amount of money
to removed from an asset is upper bounded. So the question
is to know, how does the optimal investment strategy of the
Merton’s problem change with such a condition added to the
model? We then study a problem under this constraint for
an investor who cares about risk and faces an infinite time
horizon. The investor wants to maximise her expected utility
function U subject to a risk aversion coefficient 0 < p <
1. The problem is first presented for infinite time horizon
and then solved for finite time horizon. Unlike the work
of Bakshi and Chen [6], we consider a pure investment for
which the utility function is from wealth w only, we do not
include consumption. The power utility function takes then
the form U(w) = wP. The principal objective of this work
is to establish an optimal trading strategy by solving a partial
differential equation, the so-called Hamilton-Jacobi-Bellman
(HJB) equation associated to the problem. A numerical
approximation is provided to study the solution to the HIB
equation known as the value function and which provides the
maximum utility. However, the dimension of the problem is
an obstacle. With both investments in stocks and bank we
need a two spatial dimensions which can bring complexity
to numerical scheme. We then proceed to a reduction of
dimension in space by homotheticity transformation of the
value function. This leads to solve the problem for the infinite
or finite time horizon in one spatial dimension. The reduction
of dimension is justified by the fact that to compress or to
extend the wealth of the two investments leads to a single
compression or extension of the maximum utility. Therefore
one way to obtain this reduction is to consider one of the
investments as unity. By the implicit finite difference methods
we compute the value function in one space dimension. For
the finite time horizon, the solution converges to the infinite
horizon as the terminal time 7' goes to infinity, and that
convergence is rather quick.

The case we are studying in this paper is that of an investor
who has money market (bank account) and stock as assets. The
objective function of the problem is given by a constant relative
risk aversion function of the total wealth held with utility risk

coefficient p. We look for an optimal strategy that will help
investors for risky investment decision in order to minimise
the losses that may incurred from delaying a trade. Indeed,
if no action of buying is made, too much money is kept and
the investor loses money in terms of opportunity cost, explain
Sethi and Thompson [7]. She could have earned higher returns
by buying stock such as bonds. The investor is then in what is
called a long position. Likewise, if no action of selling is made,
too much stock is held, the money market is small and money
is lost in terms of opportunity cost. The investor is said to be
in a short position. Using the dynamic programming method,
we compute an optimal strategy that will help such investors
to exercise at the best moment in such way to benefit from any
particular investment.

2. Stochastic Optimal Control Theory
for Investment Strategies

Optimal control theory is developed to find optimal ways to
control dynamical systems over time. This concerns generally
deterministic optimal control problems for which the outcome
is known, [7]. This notion finds also its usefulness in several
applications other than finance. See for exemple [8] and [9].
However, Stochastic optimal control theory deals with the
uncertainly in the evolution of a dynamical system considered.

The use of stochastic optimal control theory in finance
is investigated in this part of the work. We show this by
an application of the dynamic programming method to the
problem of finding optimal investment strategies.

Risk is an important component to consider before
investing. In financial modelling, we associate to the utility
function of a considered problem a parameter, p, referring to
the risk and called the risk aversion coefficient. The utility
function is then said to be constant relative risk aversion and
takes different forms according to the problem to solve. We
note it by U(c) = ¢P, where c represents the total wealth held
and 0 < p < 1.

2.1. Model Formulation

We consider the standard financial market as defined by
Egriboyun and Soner in [10], Davis and Norman in [11], in
which only two investments are considered: a risk-free asset
“bank account” and a risky asset “stock” with respective price
dynamics given by

dPy(t) = Py(t)(udt + odW (2)), 2)

where » > 0 is the constant risk-free rate, y > 7 is the
constant expected risky rate and o is the stock’s volatility.
The stock price evolves according to the geometric Brownian
motion form. The process {W(t);t > 0} is a standard one
dimensional Brownian motion on a filtered probability space
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(Q, F, {Fi};>0,P) with W(0) = 0 almost surely. The
filtration {F;},- is assumed to be right-continuous and each
F: contains all the P — null sets of F. The initial position
of the investor is given by x( dollars invested in the bank
account and in stock yo dollars invested. Let denote by
L the cumulative dollar value for the purpose of buying
stock (or selling money) and by M the cumulative value

for selling stock. Both are right-continuous, nonnegative
and nondecreasing {F;},.,-adapted process with L(0) =
M(0) = 0. -

We refer by (X (¢), Y (¢)) the position of the investor at time
t where X (¢) represents the dollar value in bank and Y (¢) the
dollar value in stock. The evolution of these dynamics are
described by the given equations:

dX(t) = rX(t)dt + u(t)dt — dL(t), X(0) = zo 3)

dY (t) = —u(t)dt + dL(t) + pY (£)dt + oY (£)dW (1),

Where u(t) is the rate of liquidation from stock to money
market such that dM (t) = w(t)d¢ and it is constrained to

u(t) < KY(t), V. )

The money on the risky asset to be transferred to risk-free
asset is bounded by a parameter /. The stock held cannot be
liquidated faster than u(¢). At time ¢, the portfolio or the total
wealth of the investor is given by B(t) = X (¢) + Y (¢), then
the evolution of the portfolio over time is described as follows

dB(t) = (rX(t) + pY (£))dt + oY ()dW (). (6)

We will note (z(t),y(t)) to refer the position rather than
employing capital letters.

Remark: As done in Egriboyun and Soner [10], we study a
pure investment problem, which refers only to the wealth held.
When consumption and transaction costs are considered, (3)
and (4) would be represented as

dX (1) = (rX(t) — C(t))dt — (1 + A)dL + (1 — p)dM(2)
dY (t) = oY ()dt + oV (£)dW (t) + dL(t) — dM(2),

where C'(t) > 0 is the consumption rate, A\ and p are
respectively the transaction costs incurred on purchase and
sale of the stock. For more details, this problem is studied
by Dai, Jiang, Li and Yi in [3] for the one dimensional
and studied by Dai and Zhong [4] for higher dimensions.
Before the formulation of our problem, we state the Merton’s
portofolio problem as an introduction to the pure problem

Y(0) = wo, “4)

considered in this paper since we are studying a Merton case
with reallocation constraint. This is a standard investment
model for continuous-time in finance. We present the problem
without taking into account the consumption.

2.2. Merton Problem

The problem is formulated as Touzi [12]. The Merton
problem presented here is concerning an investor who must
allocate her total wealth or fortune between a risky asset or a
risk-free asset in order to maximise the expected utility of her
terminal wealth. Let denote X (¢) the total wealth at time ¢ €
[0,T] and X the initial wealth. We note (t) the proportion
at time ¢ of the wealth to invest in the risky asset and the
remaining fraction 1 — 7(¢) to invest in the risk-free asset. The
wealth evolves according to the stochastic differential equation

dX(t) = X@O)[(r + (u — )7 (¢))dt + w(t)cdW ()], (7)

with initial condition Xy = z and where r represents the rate
of return on the risk-free asset, ;1 and o are respectively the
expected return and the volatility on the risky asset, and W (t)
is the Wiener Brownian motion. The value function is given as

Vi) = sup( BCx(T)) ®

where the utility function u(x) follows the constant relative
risk aversion of the form u(x) = 2P. The associated Hamilton-
Jacobi-Bellman equation is represented as follows

or(x,t) + supw< (r+ (u—r)map(z,t) + %ozwzfcpm(x, t)) =0, )

Where ¢(z,t) is a twice continuously differentiable
function on the state process x and the time ¢. By verification
theorem, the function ¢(z, t) corresponds to the value function
V(z,t). Since the utility function is of the form z?, the value
function can be defined as V' (z,t) = 2PV (1,t), and we set a
function h(t) = V(1,t). Plugging this into (9), the result is an
ordinary differential equation on % given as follows

hi + (ph) sup,. <7" +(p—r)m+ %(p - 1)027r2> =0. (10)

Solving this equation for 7, the maximiser is given by

n—=r

= 11
@ 20 =p)’ (11)
and (10) is now reduced to
1(u—r7)°p
hi +h - | =0. 12
CTRPT 20T y) 12
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Finally solving (12) for h we get the result

Y
h(t) = exp rp—i—li(ﬂ )

3oty | T

13)

Therefore the value function V' (x,t) = «Ph(t) satisfies the
HIJB equation and the optimal control portofolio allocation for
the Merton problem is given by 7*(¢) = w. The optimal
strategy is then to allocate the constant proportion 7 in the
risky asset, and the constant proportion 1 — 7 in the risk-free
asset. For more details about the Merton original problem see
also Holth [13]. This result will be useful to set the solution of
our problem in the next section.

2.3. Optimisation Problem

A problem of minimising losses can be reformulated as a
one of maximising winnings on the wealth held. Our problem
then becomes to find an optimal strategy for maximising the
expected utility obtained from the total wealth held. We first
set the problem in infinite time horizon and then solve for
the finite time horizon. In the following we will see that the
solution in the two cases converge.

The objective function related to our problem is in the
Lagrange form with infinite time horizon given by the follows

J(z,y) = E{/UOO eiﬁT(z(T) + y(7))Pdt|, (14)

min {Lp + Ky(py — pz) — (2 +y)"; (v — ¢y)} =0,

With (z,y) € S and where Lo(x,y) = Bo(z,y) —

%azychyy(z, y) — pypy(z, y) —rzps(x, y) is a second order
differential operator.

To facilitate the computation of the value function, [10]
propose a reduction of dimension by using homothetic
transformation of the value function. This is done since the
compression or extension of wealth invested results in a simple
compression or extension of the maximum utility. Therefore,
one of the investment can be considered as unity.

The notion of homotheticity of the value function V' (x, y) is
then applied, defined as

Vyz,vy) ="V (z,y), (18)
which means that if all arguments of the function are
multiplied by a factor, then its value is multiplied by some
power of this factor. We note that the factor v will represent in
our case the total wealth.

Using this definition, we reduce our problem to one variable
as the following

g9(z) =V(1,2). (19)

. @(Hy)p)f(xiy) +<x+y)p(§;f<xiy

where 8 > 0 1is the discount rate, 0 < p < 1 is the risk aversion
coefficient and, (z(7) + y(7)) represents the total wealth at
time 7. The solvency set is defined as

S={(z,y) 12 =0,y >0}, 15)
which is the closed set of positions such that the investor
will always hold a positive wealth by admissible strategies,
Egriboyun and Soner in [10]. Stock and bank are animated
by purchases and sales of assets. We sell shares of stock to
satisfy the money requirements, similarly we sell money to
“refuel” the stock. For our case, the controls variables will
then be given by (L, M). The maximum cost will be obtained
from the value function associated to (14) and defined for all
(z,y) € S as follows

V(z,y) = supLME[/OOo e P (x(r) + y(r))Pdt|. (16)

As Egriboyun and Soner [10], an investment policy (L, M),
with L(0) = M(0) = 0 is said admissible for the initial
position (zg,yo) if position (z(t),y(t)) which is solution of
(3) and (4) is in S for all ¢ > 0 and we note by A(xq, yo) the
set of all such policies.

To find the optimal policy (L, M), we need to find the partial
differential HIB equation that the value function V' (x, y) must
satisfy. From [10], the function V (z,y) satisfy the following
HIJB equation:

a7

We solve the HIB equation for g(z) and then use the
homothety property to recover the value of V'(x,y) as

N
Viey) = V(1Y) = xg(x) 0)

According to (20) and the definition of homotheticity of the

value function, the variable z in (19) is in fact z = %

Y

which represents the stock ratio and 1 — 2z = % will
T

represent the bank account ratio. We can now set a function
of the stock and the money bank as function of one variable z,
thisis f(z) = V(1 —z, z). The value function in (20) becomes

V(z,y) = (z+ y)”f(y) 21)

z+y

By a verification theorem, ¢(z,y) = V(x,y). Using the
value function as given in (21), we calculate the respective
derivatives as appearing in the expression of the operator
Lo(z,y). We have:

>) =p(z + y)“f(gc‘iy) —yla+ W”% <x i y)
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Since z = %, and to simplify we use f <) =1,

Ve=px+y)P ' f— 2 +y)P ' f. =pf — 2f..

v, = <88y(z+y)p>f<ffiy> + (z+y)? <86yf(miy)>

Usingizl—z,
T+y

Vy =p(z + y)pilf + ( + y)pil(l —2)f.=pf+(1—2)f..

Similarly we calculate

And from V, we get

Vi =p(p = V(@ +9)"*f +ple + )P (%f(xiy>> - (xfyﬁ(“y)pl(c‘?ayf(w-ywn

(x+y)?
e () v ae e s (G (7))
(=D +y)P 2+ —2)(+y)P % = (1= 2)(z+y)">

p\p
( )( _1)($+y)p 2)fz (1_2)2(x+yp 2fzz
plp—1f +2(p = 1)(L = 2)f + (1 = 2)* fu.

We take the expressions found for V,;, V,, and V,;,, in the HIB equation given in (17) and take y = 2, x = 1 — 2 to get

min((ﬂ + %azp(l —p)2® — upz —rp(1 — 2)) f
+ (—pz(l — 2) + 0?22(1 — p)(1 — 2) + K2+ (22)
rz(1—2))f. — %02,22(1 — Z)2fzz —1; —fz> =0.

If Vo(z,y) — Vy(z,y) = 0 at some position (z, y), then this Now we describe the HIB equation for the finite horizon
holds at all positions through (x,y). A suggestion is that the  problem. We note that the only difference with the problem
limit between the selling stock region and the selling money  in infinite horizon is the factor time. For this case the time is
market region is a line through the origin. This is called the  considered as parameter. The HJB equation associated to this

optimal line. problem will then contain a term derivative in time ¢, and it is
given by
min {¢; + Lo + Ky(py — ¢z) = (2 +9)"5 (9o — ¢y)} = 0, (23)

for (z,y,t) > 0 and where L¢ is defined as for the infinite horizon case. The value function is a function of three variables, we
have V (x,y,t). The reduction of dimensions as done in (21) leads in this case to the following homotheticity transformation

V(z,y,t) = (x + y)Pf(xiy,t), (24)

with f(z,t) = V(1 — z, 2, t).
The expressions of V,, V,, and V,,, will contain the term f;, plugging them into (23), we obtain
: 1
min((f+ 5+ 530001 = p)3% = ps —1p(L = DS + (-ps(1 = 2) 4 0*2(1 = p)(1 = ) + Kot
(25)
L oo 2
rz(1—2))f. — 502 (1-=2)7°f.. -1, —f. ) =0.

From (25), the result to the original Merton problem presented in Section (2.2) with utility function as in our case, (x + y)?,
gives the following HJB equation
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BV (z) — rzV,(z) — sup, (W(u —r)zV.(z) + ;77 022V, (2) — zp) =0.

The value function solving this PDE is given by

V(z,y) = V" (x +y)?, 27)
where 1 9
with constraint on the discount rate as 8 > rp + ;M

to guarantee a solution to the problem. The optimal control
maximiser is given by

(29)

For more details about those results see Soner, [14]. To
compute the value function V' (x, y, t) we compute the function

Y
/ (:E +y t)
problem since both act as coefficient of the utility (z + y)?.
We then call f(z,t) the coefficient function. The next step of
the work is to compute the coefficient function and the optimal

strategy associated using numerical techniques.

that we will compare to VV"¢" of the Merton

3. Numerical Approximations and
Results

Optimal control problems are usually nonlinear and do
not have analytical solutions. To solve the problem stated
in Section 2.3 which consists in finding the value function
associated to the nonlinear partial differential equation or the
HIJB equation, we then use numerical approximation methods.
We use finite difference methods to approximate numerically
the value function. Finite difference methods are efficient
for solving partial differential equations. We deal with the
central finite difference method to approximate the partial
derivatives with respect to space. Three methods can be used
to approximate the partial derivative with respect to time, the
implicit, explicit and Crank-Nicolson difference. To solve our
problem we use the implicit method.

3.1. Finite Difference Methods

The value function V(x,y,t) described in (24) solves the
PDE in Equation (23) if the function f(z,¢) = V(1 — z, 2,t)
solves the PDE in (25). In fact, it is the function f(z,t) that
is computed in order to compute the value function. Doing
this by the finite difference methods involves to solve the PDE
on a discrete space-time grid (z, t), with mesh steps (Az, At)
for the space and the time respectively. Since the reduction
of dimension done in (20) creates an infinite domain [0, 00)
for f(z,t), we truncate the unbounded domain to the bounded
domain [0,1] to allow the computation by computer. We

(26)

discretise the time period interval [0,T] into M subintervals
with terminal time 7', and the space interval [0,Z] into N
subintervals with terminal value Z = 1, such that

Z=0,A2,2Az,..., NAz 10
T =0,At,2At,..., MAt, 30)

Z T
and Az = A At = U The function f can be denoted
in grid form at position (z;,t;) as f/ = f(iAz, jAt) with
t=20,...,Nand j = 0,...,M. Figure 1 below shows the

grid discretisation.

Ratio stock z

F(22.22)

=3

0 at 24t T Timet

Figure 1. Space-time discretisation.

From Umeorah in [15], the following finite difference
methods can be used for the approximation of the coefficient
function f(z,t) :

(1) Forward difference in time and in the underlying stock
respectively. We know the position (z;,¢;) and look for
the position (z;+1,t;41)

of f -1l
ot ’ At ’
af _fla-F
oz Az

€2y

(2) Backward difference in time and in the underlying stock
respectively. We know the position (z;1,%;41) and look
for the position (z;,t;)

of _f-f7
o
&N Az

(3) Central difference in time and in the underlying stock
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respectively. 4 4 at time (j 4+ 1)At. For the first derivative of space it considers
of ittt backward difference in space and for the second derivative
ot AL 3 it considers the standard approximation. The numerical
af J fj (33) approximations are as follows: The approximation of the first
9 ~ % derivative in time is
(4) Second derivative with respect to the underlying stock of ff o f{ 36
O°f | fin =26 + fi
922 ~ S (Az)? ! G4 andin space we have
3f .f‘j+1 _ j+1
3.2. Implicit Finite Difference Method 5, ZTZ“I 37
Recall from (25) the PDE to solve: For the second derivative in space we get
. 1 , , ,
min (ft +(B+ 50°p(1 = p)2® — ppz —rp(1 = 2)) f o i -2t i 38)
922~ Az)?
+ (—pz(1 = 2)+ 02221 —p)(1 — 2) + Kz +rz(1 — 2))f. : (Az)
1 221 o) g ) 0 Substituting these approximations into (35) we get
2 zz — by T Jz - Y- . . ) )
(35 Bifi + A+ i =+ At (39)
The implicit finite difference method considers forward here
difference in time, therefore the discretisations are computed W
At At
Ai=1+ (AZ')ZUZZ?(l —z)’+ A [— pzi(l = z) + 0222 (1= p)(1 — zi) + Kz + (1 - Zi)Zi:|
1
+ At [B +50°p(1 = p)2f = ppz — (1 = zi)p] :
At At 1
Bi= 1, {Mzi(l —2) = 0’2} (1 =p)(1 —z) — Kz —r(1 - Zi)zz‘] Ve { 50z (1= 21)2}
At 1
When we expand (39) we have the following
Bof’T' + Ao fg T + Cof{ ™ = f3 + At
Bifitt + AT i = A+ At
Bof{ ™ + A fiT + Coff™ = f5 + A
Byo1 S5 + Ao A+ Onoa i = foy + At
By + AN+ On L = A+ At
We can present this in a matrix form as
Ay Co 1T [A™ ] [ #+ar ]
By A1 4 f—H fl+At
By A, Cy 5+1 f% + At
X = (40)
By_1 Any-1 Cna Jj\';fl f{;,__l + At
L By Av | | AT S+ A
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This is the tridiagonal system to compute in order to find the
numerical solution to the PDE HIB equation. At the boundary
point z = 0 the term B; fi]fll is identically equal to zero for
¢ = 0 and similarly at point z = N, the term C} ffj'll is
identically equal to zero for ¢ = N.

3.3. Numerical Results

From [10], the following parameters are used in the model,
w=15%, r=5%, p=0.5, 5=0.5 and 0=100%. The Merton
proportion given by the maximiser in (29) is obtained as
7™¢"=0.2 and gives the optimal value for the amount to hold
in stock and for this value, the factor V"**" gives the optimal
value function. We note that the two factors V"*¢" and ™"
depend only on the parameters and not on the state pair (x, y).
This means that a constant fraction of the wealth is invested in
stock. But the coefficient function f(z,t) depends on (z,y)

through the ratio stock z = % We can then set an optimal
x

investment strategy such that the ratio stock in our constrained
problem must be always less than 7" and keep increasing as
the factor constraint K gets larger. The case K = oo gives the
optimality for the infinite horizon problem. When the ratio
z is exceeded by the optimal value, the money market can
always be sold and stock can be bought at any rate to reach
the optimality and the coefficient function f(z,t) ~ V™",
But when the risky ratio z exceeds the optimal value, we are
not allowed to sell stock at any rate greater than Ky as given
by the Constraint in (5), and the coefficient function is far from
the value V"*¢". The investor is then losing.

By numerical analysis using Python software, Figure 2a and
Figure 2b below show the coefficient function f(z,t) in space-
time [0,1] x [0,50] for value of K equal 1 and 3 respectively.

0 o0

(b) Parameter K=3

Figure 2. Coefficient function for different values of K.

The solution to infinite time horizon shows quicker
convergence. For the same set of parameters as above, with
time interval [0,80], the numerical approach for the derivation
with respect to time becomes zero at time ¢t ~20. The
convergence depends on the value of the discounting factor
B since the factor integrand under the objective function is of
e Pt and (x(t) + y(t))P.

Figure 3a and Figure 3b below show the speed of
convergence for different values of /.

r=0L1)
&

|

-

0 w0 20 E 1) 4 50 & 0 B0
time

(a) Factor 3=0.1

bme

(b) Factor 3=0.5

Figure 3. Convergence to infinite horizon solution at z=0.

4. Conclusion

An investment Merton’s optimal problem with a reallocation
constraint to the stock has been studied in this paper. Under
this constraint, for a pure investment problem as defined in
Section 2, we have observed that the optimal investment
strategy to adopt in order to maximise the objective function
defined in (14) is to invest a constant proportion of the wealth
in the risky asset, the stock, as in the Merton’s investment
problem. In other words, it is optimal to stay on the Merton’s
line which passes through the origin position (z, y). But, since
the financial market is subject to changes (thus this problem
studied by stochastic optimal control theory), the investor
might not stay on the optimal line. So, when we are not on
the line, if the stock held exceeds the optimal proportion given
by 7* in (29) at time ¢, we sell the stock at the rate Ky(t)
which is maximum, and invest in the money market; if the
money market is in excess, we sell money by buying stock. We
studied numerically the dynamic programming method used to
solve our problem and noticed that for large enough values of
the parameter K, our solution given by the value function is
not too far from the optimal value function for the Merton’s
problem; the convergence is quick, and for those values of K,
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the optimal proportion in stock is increased. We also observed
that the finite time horizon problem converges rather quickly
to the infinite time horizon since from a certain time around
t=20, the derivative term with respect to time goes to zero and
the convergence is quick for large values of the discounting
factor 5. By a reduction of the spatial dimension, using finite
difference methods, we presented some illustrations describing
all those observations.
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